\(\dfrac{x-6}{1998}\) + \(\dfrac{x-4}{2000}\) = \(\dfrac{x-2000}{4}\) + \(\dfrac{x-1998}{6}\)
\(\dfrac{x-6}{1998}\) - 1 + \(\dfrac{x-4}{2000}\) - 1 = \(\dfrac{x-2000}{4}\) - 1 + \(\dfrac{x-1998}{6}\) - 1
\(\dfrac{x-6-1998}{1998}\) + \(\dfrac{x-4-2000}{2000}\) = \(\dfrac{x-2000-4}{4}\) + \(\dfrac{x-1998-6}{6}\)
\(\dfrac{x-2004}{1998}\) + \(\dfrac{x-2004}{2000}\) = \(\dfrac{x-2004}{4}\) + \(\dfrac{x-2004}{6}\)
(\(x-2004\)).[\(\dfrac{1}{1998}\) + \(\dfrac{1}{2000}\) - \(\dfrac{1}{4}\) - \(\dfrac{1}{6}\)] = 0
\(x\) - 2004 = 0
\(x\) = 2004