+ ) \(\left(x-4\right)\left(6-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\6-x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=4\\x=6\end{cases}}\)
+ ) \(\left(2x-1\right)^2=25\)
\(\left(2x-1\right)^2=5^2\)Hoặc \(\left(2x-1\right)^2=\left(-5\right)^2\)
\(\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}\Rightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)
+ ) \(\left(x\div6\right)^5=243\)
\(\left(x\div6\right)^5=3^5\)
\(\Rightarrow x\div6=3\)
\(\Leftrightarrow x=18\)
\(\left(x-4\right)\left(6-x\right)=0\)
Th1:\(x-4=0\Rightarrow x=4\)
Th2: \(6-x=0\Rightarrow x=6\)
\(\Rightarrow S=\left\{4;6\right\}\)
\(\left(2x-1\right)^2=25\)
\(\left(2x-1\right)^2=5^2\)
\(2x-1=5\)
\(2x=6\)
\(x=3\)
\(\Rightarrow S=\left\{3\right\}\)
\(\left(\frac{x}{6}\right)^5=243\)
\(\left(\frac{x}{6}\right)^5=3^5\)
\(\frac{x}{6}=3\)
\(x=3\cdot6=18\)
\(\Rightarrow S=\left\{18\right\}\)