\(\frac{x-19}{24}\)+ \(\frac{x-19}{25}\)= \(\frac{x-19}{26}\)+ \(\frac{x-19}{27}\)
<=> \(\frac{x-19}{24}\)+ \(\frac{x-19}{25}\)- \(\frac{x-19}{26}\)- \(\frac{x-19}{27}\)= 0
<=> \(\frac{x}{24}\)- \(\frac{19}{24}\)+ \(\frac{x}{25}\)- \(\frac{19}{25}\)- \(\frac{x}{26}\)+\(\frac{19}{26}\)- \(\frac{x}{27}\)+\(\frac{19}{27}\)= 0
<=> \(\left(\frac{x}{24}+\frac{x}{25}-\frac{x}{26}-\frac{x}{27}\right)+\left(-\frac{19}{24}-\frac{19}{25}+\frac{19}{26}-\frac{19}{27}\right)=0\)
<=> \(x\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)-19\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)
<=> \(x\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)\)= \(19\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)\)
<=> x = 19