3) (x−1)5+(x+3)5=242(x+1)(x−1)5+(x+3)5=242(x+1)
- Đặt x+1=y⇒x−1=y−2;x+3=y+2x+1=y⇒x−1=y−2;x+3=y+2
- Ta có:
(y−2)5+(y+2)5=242y(y−2)5+(y+2)5=242y
⇔y5−5y4+40y3−80y2+80y−32+y5+5y4+40y3+80y2+80y+32=242y⇔y5−5y4+40y3−80y2+80y−32+y5+5y4+40y3+80y2+80y+32=242y
⇔2y5+80y3+160y−242y=0⇔2y5+80y3+160y−242y=0
⇔2y5+80y3−82y=0⇔2y5+80y3−82y=0
⇔2y(y4+40y2−41)=0⇔2y(y4+40y2−41)=0
⇔2y(y4+41y2−y2−41)=0⇔2y(y4+41y2−y2−41)=0
⇔2y[y2(y2+41)−(y2+41)]=0⇔2y[y2(y2+41)−(y2+41)]=0
⇔2y(y2−1)(y2+41)=0⇔2y(y2−1)(y2+41)=0
⇔2y(y−1)(y+1)(y2+41)=0⇔2y(y−1)(y+1)(y2+41)=0
⇔y=0;y−1=0⇒y=1;y+1=0⇒y=−1⇔y=0;y−1=0⇒y=1;y+1=0⇒y=−1
⇔y=0⇒x+1=0⇒x=−1⇔y=0⇒x+1=0⇒x=−1
⇔y=1⇒x+1=1⇒x=0⇔y=1⇒x+1=1⇒x=0
⇔y=−1⇒x+1=−1⇒x=−2