Đặt \(A=6x+10y+z\), \(B=3x-2y+4z\)
Ta có : \(A+5B=\left(6x+10y+z\right)+5\left(3x-2y+4z\right)\)
\(=21x+21z=21\left(x+z\right)⋮21\forall x,z\inℤ\)
\(\Rightarrow A+5B⋮21\)(1)
+) Nếu \(A⋮21\) thì từ (1) \(\Rightarrow5B⋮21\Rightarrow B⋮21\) ( Do \(5⋮̸21\) )
+) Nếu \(B⋮21\Rightarrow5B⋮21\) thì từ (1) \(\Rightarrow A⋮21\)
Vậy ta có điều phải chứng minh.
Vì \(6x+10y+z⋮21\)\(\Leftrightarrow4.\left(6x+10y+z\right)⋮21\)\(\Leftrightarrow24x+40y+4z⋮21\)
Ta có: \(\left(24x+40y+4z\right)-\left(3x-2y+4z\right)\)
\(=24x+40y+4z-3x+2y-4z\)
\(=\left(24x-3x\right)+\left(40y+2y\right)+\left(4z-4z\right)\)
\(=21x+42y=21.\left(x+2y\right)⋮21\)
mà \(24x+40y+4z⋮21\)\(\Rightarrow3x-2y+4z⋮21\)
Điều ngược lại:
Vì \(3x-2y+4z⋮21\)\(\Leftrightarrow5.\left(3x-2y+4z\right)⋮21\)\(\Leftrightarrow15x-10y+20z⋮21\)
Ta có: \(\left(15x-10y+20z\right)+\left(6x+10y+z\right)\)
\(=15x-10y+20z+6x+10y+z\)
\(=\left(15x+6x\right)-\left(10y-10y\right)+\left(20z+z\right)\)
\(=21x+21z=21.\left(x+z\right)⋮21\)
mà \(15x-10y+20z⋮21\)\(\Rightarrow6x+10y+z⋮21\)
Vậy \(6x+10y+z⋮21\Leftrightarrow3x-2y+4z⋮21\)