Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trọng Nguyễn Phú

Với x,y,z thuộc Z. Nếu 6x+10y+z ⋮ 21 thì 3x-2y+4z ⋮ 21 và ngược lại

 

Trí Tiên亗
6 tháng 3 2020 lúc 15:23

Đặt \(A=6x+10y+z\)\(B=3x-2y+4z\)

Ta có : \(A+5B=\left(6x+10y+z\right)+5\left(3x-2y+4z\right)\)

\(=21x+21z=21\left(x+z\right)⋮21\forall x,z\inℤ\)

\(\Rightarrow A+5B⋮21\)(1)

+) Nếu \(A⋮21\) thì từ (1) \(\Rightarrow5B⋮21\Rightarrow B⋮21\) ( Do \(5⋮̸21\) )

+) Nếu \(B⋮21\Rightarrow5B⋮21\) thì từ (1) \(\Rightarrow A⋮21\)

Vậy ta có điều phải chứng minh.

Khách vãng lai đã xóa
Tạ Đức Hoàng Anh
6 tháng 3 2020 lúc 15:37

Vì \(6x+10y+z⋮21\)\(\Leftrightarrow4.\left(6x+10y+z\right)⋮21\)\(\Leftrightarrow24x+40y+4z⋮21\)

Ta có: \(\left(24x+40y+4z\right)-\left(3x-2y+4z\right)\)

      \(=24x+40y+4z-3x+2y-4z\)

      \(=\left(24x-3x\right)+\left(40y+2y\right)+\left(4z-4z\right)\)

      \(=21x+42y=21.\left(x+2y\right)⋮21\)

  mà \(24x+40y+4z⋮21\)\(\Rightarrow3x-2y+4z⋮21\)

Điều ngược lại:

Vì \(3x-2y+4z⋮21\)\(\Leftrightarrow5.\left(3x-2y+4z\right)⋮21\)\(\Leftrightarrow15x-10y+20z⋮21\)

Ta có: \(\left(15x-10y+20z\right)+\left(6x+10y+z\right)\)

      \(=15x-10y+20z+6x+10y+z\)

      \(=\left(15x+6x\right)-\left(10y-10y\right)+\left(20z+z\right)\)

      \(=21x+21z=21.\left(x+z\right)⋮21\)

  mà \(15x-10y+20z⋮21\)\(\Rightarrow6x+10y+z⋮21\)

Vậy \(6x+10y+z⋮21\Leftrightarrow3x-2y+4z⋮21\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Trình Nguyễn Lê
Xem chi tiết
Lương Thị Phương Linh
Xem chi tiết
Mãi mãi cô đơn
Xem chi tiết
Nguyễn Khánh Trình
Xem chi tiết
Nguyễn Văn Xuân
Xem chi tiết
THÁM TỬ TRUNG HỌC KUDO S...
Xem chi tiết
Yến Chử
Xem chi tiết
trần linh
Xem chi tiết
Hoàng Minh
Xem chi tiết