\(4^{n+3}+4^{n+2}-4^{n+1}-4^n=4^2\left(4^{n+1}+4^n\right)-\left(4^{n+1}+4^n\right)\)
\(=\left(4^2-1\right)\left(4^{n+1}+4^n\right)=15\left(4^{n+1}+4^n\right)\)
Do \(n\) và \(n+1\) là 2 số tự nhiên liên tiếp nên luôn khác tính chẵn lẻ
Mà \(4^k\) tận cùng bằng 4 nếu k lẻ, tận cùng bằng 6 nếu k chẵn
\(\Rightarrow4^{n+1}\) và \(4^n\) luôn có 1 số tận cùng bằng 4, một số tận cùng bằng 6
\(\Rightarrow4^{n+1}+4^n\) tận cùng bằng 0
\(\Rightarrow4^{n+3}+4^{n+2}-4^{n+1}-4^n\) luôn có tận cùng bằng 0