a. Gọi (n + 4,n+5) là d
Vì n + 4 và n + 5 chia hết cho d => (n+5) - (n+4) = 1 chia hết cho d
=> d = 1
=> n +4/ n+5 tối giản
b.Gọi (2n+3, n+2) là d
Ta có 2n+4 và 2n+3 chia hết cho d
=> (2n+4)-(2n+3) = 1 chia hết cho d
=> d =1
=> 2n+3/n+2 tối giản
a. Gọi (n + 4,n+5) là d
Vì n + 4 và n + 5 chia hết cho d => (n+5) - (n+4) = 1 chia hết cho d
=> d = 1
=> n +4/ n+5 tối giản
b.Gọi (2n+3, n+2) là d
Ta có 2n+4 và 2n+3 chia hết cho d
=> (2n+4)-(2n+3) = 1 chia hết cho d
=> d =1
=> 2n+3/n+2 tối giản
a,Chứng tỏ rằng các phân số sau tối giản, với n là số tự nhiên: \(\frac{n-1}{3-2n}\); \(\frac{3n+7}{5n+12}\)
b,Tìm các số nguyên n để các phân số sau nhận giá trị nguyên: \(\frac{2n+5}{n-1}\); \(\frac{2n+1}{3n-2}\)
Chứng tỏ rằng với mọi số nguyên n, các phân số sau là phân số tối giản:
a,\(\frac{15.n+1}{30.n+1}\)
b,\(\frac{n^3+2n}{n^4+3.n^2+1}\)
. Với n ∈ N, chứng tỏ rằng các phân số sau là phân số tối giản
n+4/n+5
2n+3/n+2
Chứng tỏ rằng với mọi số nguyên n, các phân số sau là phân số tối giản
a,\(\frac{15n+1}{30+1}\)
b, \(\frac{n^3+2n}{n^4+3n^2+1}\)
Chứng tỏ rằng các phân số tối giản sau với mọi số tự nhiên N.
a. \(\frac{n+1}{2n=3}\) b. \(\frac{2n+3}{4n+8}\)
Chứng tỏ rằng các phân số sau tối giản với mọi số tự nhiên n :
a)\(\frac{n+2}{n+3}\)
b)\(\frac{n+1}{2n+3}\)
c)\(\frac{2n+3}{4n+8}\)
Chứng tỏ rằng các phân số sau là phân số tối giản với mọi n .
a. \(\frac{n+1}{2n+3}\)
b. \(\frac{2n+3}{4n+8}\)
Chứng tỏ rằng với mọi số tự nhiên n , các phân số sau là phân số tối giản :
a) \(\frac{4n+3}{5n+4}\) b) \(\frac{n^3+2n+1}{n^2+2}\)
1.chứng tỏ rằng với mọi số nguyên n, các phân số sau đây là phân số tối giản :
\(\frac{15n+1}{30n+1}\)
a)b)\(\frac{n^3+2n}{n^4+3n^2+1}\)
2.Tìm tất cả các số nguyên để phân số \(\frac{18n+3}{21n+7}\)là phân số tối giản
3.Tìm phân số \(\frac{a}{a.b}\)biết rằng phân số đó bằng phân số \(\frac{1}{6.a}\)
4.Chứng tỏ rằng nếu phân số \(\frac{5n^2+1}{6}\)là số tự nhiên với n thuộc \(ℕ\)thì cả phân số \(\frac{n}{2}\)và\(\frac{n}{3}\)là các phân số tối giản
Ai làm đúng cả 4 bài mk tích cho nhé !!!