\(\frac{2^n}{8^k}=\frac{2^{3k+1}}{8^k}=\frac{2^{3k}.2}{8^k}=\frac{\left(2^3\right)^k.2}{8^k}=\frac{8^k.2}{8^k}=2\)
Vậy.....
Violympic vòng 15 à?
\(\frac{2n}{8k}=\frac{2.\left(3k+1\right)}{8k}=\frac{6k+2}{8k}=\frac{2.\left(3k+1\right)}{2.4k}=\frac{3k+1}{4k}\)
Vậy với n=3k+1 thì \(\frac{2n}{8k}=\frac{3k+1}{4k}\)