\(a^2+5b^2-4ab+2a-6b+3\)
\(=\left(a^2-4ab+4b^2\right)+\left(2a-4b\right)+1+\left(b^2-2b+1\right)+1\)
\(=\left(a-2b\right)^2+2\left(a-2b\right)+1+\left(b^2-2b+1\right)+1\)
\(=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1\forall a;b\)
Mà \(1>0\) nên \(a^2+5b^2-4ab+2a-6b+3>0\forall a;b\)(đpcm)