Với mọi giá trị khác 2 và -2 ta luôn có 1/(x-2)(x+2)=1/k.(1/x-2)-(1/x+2)
CMR với mọi x thì đa thức f(x)=x6-x5+x4-x3+x2-x+1 luôn có giá trị dương
Cho A=2x2-5x;B=-x2+x+3;C=2x-2
Chứng minh rằng tring 3 biểu thức điA,B,C có ít nhất một biểu thức luôn có giá trị không âm với mọi giá trị của x
CMR: f(x)=ax^3+bx^2+cx+d có giá trị nguyên với mọi x nguyên khi và chỉ khi 6a,2b, a+b+c và d là số nguyên
cho đa thức f(x)+2.f(2-x)=x+2 với mọi giá trị của x. tính f(-1).
giúp với nha !!!!
Trong bài Đại lượng tỉ lệ thuân của lớp 7 có ghi:
Nếu hai đại lượng tỉ lệ thuận với nhau thì:
1. Tỉ số hai giá trị tương ứng của chúng không thay đổi.
Giả sử có 2 đại lượng x và y cùng với hằng số k là 2. Vậy bất cứ giá trị nào của x, y tỉ lệ thuận với nhau và có hằng số k là 2 thì đó là giá trị tương ứng của 2 đại lượng x và y?
2. Tỉ số của 2 giá trị bất kì của đại lượng này bằng tỉ số của 2 giá trị tương ứng của đại lượng kia.
Đại lượng này là x, đại lượng kia là y? Vậy 2 giá trị bất kì của đại lượng x là gì? 2 giá trị tương ứng của 2 đại lượng kia là gì? Cho ví dụ?
Bài toán 1 bài Một số bài toán về đại lượng tỉ lệ thuân như sau:
Hai thanh chì có thể tích là 12cm3 và 17cm3. Hỏi mỗi thanh nặng bao nhiêu gam, biết rằng thanh thứ hai nặng hơn thanh thứ nhất 56,5g?
Phần giải có ghi: Giả sử khối lượng của hai thanh chì tương ứng là m1 và m2 gam. Do đó khối lượng và thể tích của vật thể là hai đại lượng tỉ lệ thuận với nhau, nên có \(\frac{m^1}{12}=\frac{m^2}{17}\).
Nếu 2 đại lượng của từng thanh chì là 2 đại lượng tỉ lệ thuận thì có liên quan gì đến \(\frac{m^1}{12}=\frac{m^2}{17}\)?
Bài toán 2 có thể cho mình cách giải và giải thích vì sao?
Cho F(x) là một đa thức bậc 4. Biết rằngF(1)=F(-1);F(2)=F(-2)
Chứng minh rằng F(x)=F(-x) với mọi giá trị của x .
Cho x và y là 2 đại lượng TLN.Khi x nhận các giá trị x1=-3 và x2=2,có 2 giá trị tương ứng của y là y1 và y2 và có hiệu bằng 13.Khi đó x.y=
(nhập kết quả dưới dạng số thập phân gọn nhất)
Cho hai đa thức bậc nhất P(x)=ax+b và Q(x)=cx+d. Chứng minh rằng với mọi giá trị của x, đa thức tổng P(x)+Q(x) có giá trị bằng tổng các giá trị của P(x) và Q(x)