A = 12 + \(\frac{12}{x-5}\)
=> Để A có giá trị lớn nhất thì \(\frac{12}{x-5}\)phải có giá trị lớn nhất => x -5 phải có giá trị nhỏ nhất và có cùng dấu với 12(1)
Mà x là số nguyên => x - 5 cũng là 1 số nguyên (2)
Từ (1) và (2) suy ra: (x-5) phải là ước nguyên dương nhỏ nhất của 12 => x - 5 = 1 <=> x = 6
\(B=\frac{37-3x}{10-x}\)
Biến đổi \(B=\frac{37-3x}{10-x}=\frac{3\left(10-x\right)+7}{10-x}=3+\frac{7}{10-x}\)
Xét x > 10 thì B < 0 (1)
Xét x < 10 thì mẫu 10 - x là số nguyên dương . Phân số B có tử và mẫu đều dương,tử không đổi nên B lớn nhất \(\Leftrightarrow\)mẫu 10 - x nhỏ nhất \(\Leftrightarrow10-x=1\Leftrightarrow x=9\).Khi đó A = 10 (2)
So sánh (1) và (2) , ta thấy GTLN của A là 10 khi và chỉ khi x = 9