+) Với x ≥ 0 thì |x| = x nên ta có: x + x = 0 ⇒ 2x = 0 ⇒ x = 0
+) Với x < 0 thì |x| = -x nên ta có: -x + x = 0 ⇒ 0 = 0 (luôn đúng)
⇒ |x| + x = 0 luôn có nghiệm đúng với x < 0
Vậy với x ≤ 0 thì |x| + x = 0.
+) Với x ≥ 0 thì |x| = x nên ta có: x + x = 0 ⇒ 2x = 0 ⇒ x = 0
+) Với x < 0 thì |x| = -x nên ta có: -x + x = 0 ⇒ 0 = 0 (luôn đúng)
⇒ |x| + x = 0 luôn có nghiệm đúng với x < 0
Vậy với x ≤ 0 thì |x| + x = 0.
Với giá trị nào của x thì ta có:
a) |x| + x = 0
b)x+|x|=2x
Với giá trị nào của x thì ta có:
a) |x| + x = 0 ; b) x + |x| = 2x
cho biểu thức F=8-2x/3x+2
a)Với giá trị nào của x thì biểu thức trên xác định.
b)Với giá trị nào của x thì biểu thức F=0.
c) Tìm x nguyên để F có giá trị nguyên.
d) Tìm x để F<0 .
Với giá trị nào của x thì ta có:
x + |x| = 2x
với giá trị nào cảu x thì ta có
a) lxl+x=0
b) x+lxl=2x
1. Xét biểu thức B= \(\sqrt{x+1}\)
a) Với giá trị nào của x thì B có nghĩa?
b) Với giá trị nào của x thì B>2? \(0\le B\le3\)
2. Xét biểu thức A= \(2004+\sqrt{2003-x}\)
a) Với giá trị nào của x thì A có nghĩa?
b) Với giá trị nào của x thì A đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
Bài 1: Cho A= x(x-4). Với giá trị nào của x thì: A=0; A<0; A>0
Bài 2: Cho B= (x-3) : x (x khác 0). Với giá trị nào của x thì: B=0 ; B<0; B>0
Xét biểu thức: A = \(\sqrt{x-5}\)
a. Với giá trị nào của x thì A có nghĩa ?
b. Với giá trị nào của x thì A= 0 ? A= 4 ?