+ Tính đạo hàm y ' = cos x + sin x + 2017 2 m .
y ' ≥ 0 ⇔ m ≥ - sin x - cos x 2017 2 = f ( x )
+ Theo bất đẳng thức Bunhiacopxki thì
( - sin x - cos x ) 2 ≤ ( - 1 ) 2 + ( - 1 ) 2 sin 2 x + cos 2 x = 2 - 2 ≤ ( - sin x - cos x ) ≤ 2
Do đó :
- 2 2017 2 ≤ f ( x ) ≤ 2 2017 2
F(x) đạt giá trị lớn nhất là 2 2017 2 = 1 2017 ⇒ m ≥ f ( m a x ) = 1 2017
Chọn C.