với các số a,b,c là các số thực thỏa mãn (3a+3b+3c)3 = 24 + (3a+b-c)3 + (3b+c-a)3 + (3c+a-b)3
CMR (a+2b) (b+2c) (c+2a) = 1
với các số a,b,c là các số thực thỏa mãn (3a+3b+3c)3 = 24 + (3a+b-c)3 + (3b+c-a)3 + (3c+a-b)3
CMR (a+2b) (b+2c) (c+2a) = 1
cho a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}=2017\)
Tìm max \(P=\dfrac{1}{2a+3b+3c}+\dfrac{1}{3a+2b+3c}+\dfrac{1}{3a+3b+2c}\)
Cho a,b,c thỏa mãn (3a+3b+3c)3 = 24 + (3a+b-c)3 + (3b+c-a)3 + (3c+a-b)3 chứng minh (a+2b)(b+2c)(c+2a)=1
cho các số thự dương a,b,c thỏa mãn 1/(a+b)+1/(b+c)+1/(c+a)=2017.tìm giá trị lớn nhất của biểu thức P=1/(2a+3b+3c)+1/(3a+2b+3c)+1/(3a+3b+2c)
cho a;b;c là các số thực dương thỏa mãn abc=1.CMR:\(\frac{1}{2a^3+3a+2}+\frac{1}{2b^3+3b+2}+\frac{1}{2c^3+3c+2}\ge\frac{3}{7}\)
cho a b c là các số thực dương thỏa mãn ab^2+bc^2 +ca^2=3 . Chứng minh rằng : (2a^5+3b^5)/ab +(2b^5+3c^5)/bc +(2c^5+3a^5)ca >= 15(a^3 +b^3 +c^3-2)
cho a,b,c là các số dương thay đổi thỏa mãn
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=2017\)
tìm giá trị lớn nhất của biểu thức
\(P=\frac{1}{2a+3b+3c}+\frac{1}{3a+2b+3c}+\frac{1}{3a+3b+2c}\)
cho a,b,c là các số thực không âm thõa mãn a^2+b^2+c^2>0 CMr (3a^2-bc)/(2a^2+b^2+c^2)+(3b^2-ca)/(2b^2+a^2+c^2)+(3c^2-ab)/(2c^2+a^2+c^2) =<3/2