\(\hept{\begin{cases}2x-my=-3\\mx+3y=4\end{cases}}\)Cho hệ phương trình : 1 . Chứng minh rằng hệ phương trình luôn có nghiệm duy nhất khi m thay đổi
2 . Tìm giá trị nguyên lớn nhất của m để hệ có nghiệm ( x0;y0) thỏa mãn
Với các giá trị của m để hệ phương trình \(\hept{\begin{cases}x-y=1\\3x+2y=m\end{cases}}\)
có nghiệm duy nhất (x0; y0) thì giá trị nhỏ nhất của tích x0.y0 bằng bao nhiêu?
1.Cho hpt \(\hept{\begin{cases}nx-y=4\\x+y=1\end{cases}}\)
a) Với giá trị nào của n thì hệ phương trình có duy nhất nghiệm?
b) Với giá trị nào của n thì hệ phương trình vô nghiệm
Bài 3: Cho hệ phương trình \(\hept{\begin{cases}3x+my=4\\x+y=1\end{cases}}\)
a. Tìm m để hệ phương trình trên có nghiệm duy nhất, vô số nghiệm
b. Tìm m để hệ phương trình trên có nghiệm x<0, y>0
Bài 1: Cho hệ phương trình với tham số m:
\(\hept{\begin{cases}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{cases}}\)
a) Giải và biện luận hề phương trình.
b) Tìm các giá trị của m để nghiệm của hệ phương trình là các số nguyên
c) tìm các giá trị của m để hệ phương trình có nghiệm dương duy nhất
Bài 2: Cho hệ phương trình với tham số m:
\(\hept{\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}}\)
a) Giải và biện luận hệ phương trình theo m
b) Trong trường hợp hệ có nghiệm duy nhất, tìm các giá trị của m để tích xy nhỏ nhất.
cho hệ phương trình \(\hept{\begin{cases}mx+2y+1\\3x+\left(m+1\right)y=-1\end{cases}}\)(m là tham số)
Tìm các giá trị nguyên của m để hệ phương trình có nghiệm duy nhất (x;y) sao cho x và y là các số nguyên.
\(\hept{\begin{cases}mx+2y=1\\3x+\left(m+1\right)y=-1\end{cases}}\)
â) giải hệ phương trình với m =3
b) tìm giá trị nguyên của m để he phương trình có nghiệm duy nhất
Cho hệ phương trình \(\hept{\begin{cases}mx-y=5\\x+y=1\end{cases}}\)
Với giá trị nào của m thì hệ phương trình có nghiệm duy nhất? Hệ phương trình vô nghiệm?
bài 1: Trong buổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ
bài 2:
1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)
a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó
b) tìm a để hệ phương trình vô nghiệm
2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)
a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a
b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1
c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên
bài 3:
1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)
2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm
Tìm giá trị của m để hệ phương trình sau có nghiệm duy nhất
\(\hept{\begin{cases}\left(m+5\right)x+3y=1\\mx+2y=-4\end{cases}}\)