Cho a,b,c>0 thỏa mãn : ab\(\ge12\),\(bc\ge8\)
Tìm Min của S= a+b+c+\(2\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)+\frac{8}{abc}\)
cho a;b;c là các số thực dương thỏa mãn abc=1
Tìm Min của P=\(\frac{a^2}{\left(ab+2\right)\left(2ab+1\right)}+\frac{b^2}{\left(bc+2\right)\left(2bc+1\right)}+\frac{c^2}{\left(ac+2\right)\left(2ac+1\right)}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm min
M=\(\frac{9}{1-2\left(ab+bc+ca\right)}+\frac{2}{abc}\)
cho a,b,c>0 và ab+bc+ac=1. tìm min F = \(\frac{a^8}{\left(a^2+b^2\right)^2}\)+ \(\frac{b^8}{\left(b^2+c^2\right)^2}\)+ \(\frac{c^8}{\left(a^2+c^2\right)^2}\)
Cho a,b > 0; a+b+c=3. Tìm Min P = \(\frac{ab}{c^2\left(a+b\right)}+\frac{ac}{b^2\left(a+c\right)}+\frac{bc}{a^2\left(b+c\right)}\)
cho a;b;c là các số thực dương thỏa mãn abc=1.Tìm Min của \(P=\frac{a^2}{\left(a+1\right)\left(b+1\right)bc}+\frac{b^2}{\left(b+1\right)\left(c+1\right)ca}+\frac{c^2-a^2b-ab-a-1}{\left(c+1\right)\left(a+1\right)ab}\)
Cho a,b,c>0 và a+b+c=1
Tìm GTNN của \(M=\frac{9}{1-2\left(ab+bc+ca\right)}+\frac{2}{abc}\)
Cho a,b,c>0. Có ab+bc+ca=2011abc
Tìm Min Q=\(\frac{1}{a\left(2011a-1\right)^2}+\frac{1}{b\left(2011b-1\right)^2}+\frac{1}{c\left(2011c-1\right)^2}\)
Cho a;b;c>0 thỏa mãn abc=1. CMR:
\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)