Cho các số thực dương a,b,c thỏa mãn a+b+c ≤ \(\dfrac{1}{3}\) , chứng minh rằng
a+b+c+\(\dfrac{1}{a}\)+ \(\dfrac{1}{b}\) + \(\dfrac{1}{c}\) ≥ \(\dfrac{82}{3}\)
Cho các số thực dương a, b, c thỏa mãn ab + bc + ca = abc. Chứng minh rằng \(\sqrt{\dfrac{a.\left(a+c\right)}{a+bc}}+\sqrt{\dfrac{b.\left(b+c\right)}{b+ac}}=\sqrt{a+b}\)
Cho a,b,c >0 Chứng minh rằng:
a) \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{a+b+c}{\sqrt[3]{abc}}\)
b) \(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
Cho a, b, c, d là 4 số khác 0 thỏa mãn: \(b^2=ac;c^2=bd\) và \(b^3+c^3+d^3\ne0\)
Chứng minh rằng: \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\) = \(\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
độ dài 3 cạnh của tam giác ABC là a,b,c .Thỏa mãn điều kiện: (a-b)2 = (b-c)2. Chứng minh tam giác ABC là tam giác đều.
cho tam giác ABC có độ dài ba cạnh là a,b,c thỏa mãn hệ thức a^2 + b^2 > 5 x c^2 chứng minh rằng c<a , c<b
Cho tam giác ABC có độ dài ba cạnh là BC= a; AC= b; AB= c thỏa mãn : a^2 + b^2 > 5*c^2 . Chứng minh rằng góc C < 60 độ
Cho a,b,c thỏa mãn ab+bc+ca =1. Chứng minh rằng
\(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}=\dfrac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\)
Tồn tại hay không một tam giác có độ dài 3 cạnh là a,b,c sao cho: a=\(\dfrac{3}{2}\)b và b=\(\dfrac{3}{2}\)