Phạm Mỹ Châu

Với a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=3\)

CMR \(\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{1}{2}\)

help me , mk đang cần gấppppppp

Thắng Nguyễn
19 tháng 5 2018 lúc 8:46

Hm hình như bài này t làm 1 lần rồi mà sao nó ko hiển thị lên ở phần câu hỏi tương tự nhỉ ??

Ta có: \(a^2+1\ge2a\)

\(\Leftrightarrow a^2+2b+3\ge2\left(a+b+1\right)\)

\(\Leftrightarrow\frac{a}{a^2+2b+3}\le\frac{a}{2\left(a+b+1\right)}\)

Tương tự rồồi cộng theo vế ta được: 

\(VT\le\frac{1}{2}\left(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\right)\)

Ta cần chứng minh \(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\le1\)

\(\Leftrightarrow-\left(\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\right)\le-2\)

\(\Leftrightarrow\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\ge2\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT=\frac{\left(b+1\right)^2}{\left(a+b+1\right)\left(b+1\right)}+\frac{\left(c+1\right)^2}{\left(b+c+1\right)\left(c+1\right)}+\frac{\left(a+1\right)^2}{\left(c+a+1\right)\left(a+1\right)}\)

\(\ge\frac{\left(a+b+c+3\right)^2}{a^2+b^2+c^2+3\left(a+b+c\right)+ab+bc+ca+3}\)

\(=\frac{\left(a+b+c+3\right)^2}{\frac{1}{2}\left(a^2+b^2+c^2+6\left(a+b+c\right)+2\left(ab+bc+ca\right)+9\right)}\)

\(=\frac{\left(a+b+c+3\right)^2}{\frac{1}{2}\left(a+b+c+3\right)^2}=2\)

Dấu "=" <=> a=b=c=1


Các câu hỏi tương tự
Duong Nguyen Tuan
Xem chi tiết
Xem chi tiết
Vo Trong Duy
Xem chi tiết
Đoàn Thị Thu Hương
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Anh Minh Cù
Xem chi tiết
GG boylee
Xem chi tiết
Vu Dang Toan
Xem chi tiết
Nguyễn Minh Huy
Xem chi tiết