Ta có: (a+b-c)-(a-b+c)+(b+c-a)-(b-a-c)
= a+b-c-a+b-c+b+c-a-b+a+c
= (a-a-a+a)+(b+b+b-b)+(c+c-c-c)
= 0+2b+0
= 2b
Vậy (a+b-c)-(a-b+c)+(b+c-a)-(b-a-c)=2b
\(\left(a+b-c\right)-\left(a-b+c\right)+\left(b+c-a\right)-\left(b-a-c\right)\)
\(=a+b-c-a+b-c+b+c-a-b+a+c\)
\(=2b\)