Đáp án cần chọn là: D
Xét 10.(a+4.b)=10.a+40.b=(10.a+b)+39.b .
Vì (10.a+b)⋮13 và 39b⋮13 nên 10.(a+4.b)⋮13 .
Do 10 không chia hết cho 13 nên suy ra (a+4.b)⋮13 .
Vậy nếu 10a+b chia hết cho 13 thì a+4b chia hết cho 13
Đáp án cần chọn là: D
Xét 10.(a+4.b)=10.a+40.b=(10.a+b)+39.b .
Vì (10.a+b)⋮13 và 39b⋮13 nên 10.(a+4.b)⋮13 .
Do 10 không chia hết cho 13 nên suy ra (a+4.b)⋮13 .
Vậy nếu 10a+b chia hết cho 13 thì a+4b chia hết cho 13
với a và b là số tự nhiên, nếu 10a+b chia hết cho 13 thì a+4b chia hết cho số nào?
A.3 B.5 C.26 D.13
bài 1: chứng minh rằng
nếu 10a + b chia hết cho 13 thì a + 4b chia hết cho 13. Với a,b là các số tự nhiên.
bài 1:CMR
a) n(n+8)(n+13) chia hết cho 3 với n là số tự nhiên
b)Nếu 10a+b chia hết cho 13 thì a+4b chia hết cho 13.Với a;b là số tự nhiên
Chứng minh rằng : a, n.(n+8) .(n+13) chia hết cho 3
b,Nếu 10a+ b chia hết cho 13 thì a+4b chia hết cho 13. Với a,b là các số tự nhiên
Chứng minh: nếu a + 4b chia hết cho 13 (a, b thuộc số tự nhiên ) thì 10a + b chia hết cho 13
Cho biết : a + 4b chia hết cho 13 ( a,b là số tự nhiên)
Chứng minh rằng: 10a + b chia hết cho 13
chứng minh rằng
a) nếu 20a + 11b chia hết cho 17 thì 83a + 38b chia hết cho17
b) nếu (2a +3b +4c) chia hết cho 7 thì ( 13a + 2b - 2c ) chia hết cho 7
c) nếu a +4b chia hết cho 13 thì 10a + b chia hết cho 13
d) nếu a + 2b chia hết cho 5 thì 3a - 4b chia hết cho 5
e) nếu a - 5b chia hết cho 17 thì 10a + b chia hết cho 17
cho a,b thuộc tập hợp số tự nhiên
Biết a + 4b chia hết cho 13. Chứng minh 10a + b chia hết cho 13
Biết 3a + 2b chia hết cho 17. Chứng minh 10a + b chia hết cho 17
Biết a -5b chia hết cho 17. Chứng minh 10a + b chia hết cho 17
với a,b là các số nguyên, chứng tỏ rằng a+4b chia hết cho 13 và khi và chỉ khi 10a +b chia hết cho 13