Ta có:
\(4a^2+3ab-11b^2=4a^2+4ab-11ab-11b^2+10ab\)
\(=4a\left(a+b\right)-11b\left(a+b\right)+10ab\)
\(=\left(4a-11b\right)\left(a+b\right)+10⋮5\)
\(10ab⋮5\Rightarrow\left(4a-11b\right)\left(a+b\right)⋮5\)
* \(a+b⋮5\Rightarrow a^4-b^4=\left(a+b\right)\left(a^2+b^2\right)\left(a-b\right)⋮a-b⋮5\left(1\right)\)
* \(4a-11b⋮5\Rightarrow4a-11b=5a-10b-a+b\)
Vì \(5a-10b⋮5\Rightarrow a-b⋮5\)
\(a^4-b^4=\left(a+b\right)\left(a^2+b^2\right)\left(a-b\right)⋮a-b⋮5\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra \(a^4-b^4⋮5\left(đpcm\right)\)