Giả sử \(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(Đúng)
Vậy \(a+b\ge2\sqrt{ab}\)
P/S: Ko chắc , e ms lớp 7
Ta có:\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\sqrt{\left(a+b\right)^2}\ge\sqrt{4ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\left(ĐPCM\right)\)
Đặt \(\sqrt{a}=x;\sqrt{b}=y\)
Theo bài ta,ta có:
\(x^2+y^2\ge2xy\)
\(\Rightarrow\left(x-y\right)^2\ge0\)(luôn đúng)