d \(\perp d_1:2x+y+1=0\Rightarrow\overrightarrow{n_d}=\overrightarrow{n_1}=\left(-1;2\right)\)
PTĐT d : \(-1\left(x+2\right)+2\left(y-1\right)=0\Leftrightarrow-x+2y-4=0\)
d \(\perp d_1:2x+y+1=0\Rightarrow\overrightarrow{n_d}=\overrightarrow{n_1}=\left(-1;2\right)\)
PTĐT d : \(-1\left(x+2\right)+2\left(y-1\right)=0\Leftrightarrow-x+2y-4=0\)
Viết phương trình tổng quát của đường thẳng d qua E(2;1) và song song với đường thẳng d1:x-2y+2=0
Cho điểm A(-3;-1), B(2;1), đường thẳng d: x-y+1=0.
a. Tính khoảng cách từ A, B đến đường thẳng d.
b. Viết pt đường thẳng d1 đi qua A và vuông góc với d.
c. Viết phương trình đthẳng d2 đi qua B và song song với d.
d. Viết pt đường tròn (C) có tâm I thuộc d và đi qua 2 điểm A, B
Phương trình tổng quát của đường thẳng ∆ đi qua điểm M 1 3 ; 4 và vuông góc với đường thẳng 2x – y + 3 = 0 là:
A.x – 2y + 5 = 0
B.x + 2y – 11 = 0
C.2x – y – 2 = 0
D. 2x – y = 0
Trong mặt phẳng toạ độ Oxy, cho hai điểm A(3;1),B(4;-2) và đường thẳng d: -x+2y+1=0. a) Viết phương trình tham số của Δ đi qua A song song với đường thẳng d b) Viết phương trình tổng quát của Δ đi qua B và vuông góc với đường thẳng d c) Viết phương trình đường tròn có bán kính AB
cho đường thẳng △ có phương trình tham số: \(\left\{{}\begin{matrix}x=1+2t\\y=-3-t\end{matrix}\right.\)
a) viết phương trình tổng quát của đg thẳng △
b) cho đg thẳng d1: x+2y-8=0 và d2: x-2y=0. viết phương trình tổng quát của đg thẳng đi qua giao điểm của d1 với d2 và vuông góc với △
giúp mk vs ạ mk cần gấp
Viết phương trình tổng quát, phương trình tham số của (d) biết
a) (d) qua A(-1,4) và vuông góc với (d1) -2x+y-1=0
b) (d) qua C(-4,3) và song song với (d1) {x=1-2t y=4+t
c) (d) qua D(-1,3) và vuông góc với (d1) {x=2-3t 2+2t
Lập phương trình thanh số, phương trình tổng quát của đường thẳng Δ biết: d. Δ đi qua D(2; 5) và E(3; 1)
e. Δ đi qua G(2; 5) và song song với đường thẳng d: 2x-3y-3 = 0
g. Δ đi qua H(2; 5) và vuông góc với đường thẳng d: x + 3y + 2 = 0
cho đường thẳng d2 : 3X +5Y-9
Đường thẳng (d1) đi qua điểm N(-3;1) và vuông góc với d2. Tìm phương trình tổng quát của đt d1
Lập phương trình của đường thẳng ∆ đi qua giao điểm của hai đường thẳng d1: x + 3y – 1 =0 d2: x – 3y - 5= 0 và vuông góc với đường thẳng d3: 2x - y + 7 = 0.
A. 3x + 6y - 5=0.
B. 6x + 12y - 5 = 0.
C. 6x+ 12y + 10 = 0.
D. x +2y + 10 = 0.