Gọi M là giao điểm \(d_1;d_2\Rightarrow\) tọa độ M thỏa mãn:
\(\left\{{}\begin{matrix}x+2y-1=0\\x-3y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{5}\\y=\dfrac{4}{5}\end{matrix}\right.\) \(\Rightarrow M\left(-\dfrac{3}{5};\dfrac{4}{5}\right)\)
Chọn \(N\left(1;0\right)\) là 1 điểm thuộc \(d_1\)
Gọi \(d_3\) là đường thẳng qua N và vuông góc \(d_2\Rightarrow d_3\) nhận (3;1) là 1 vtpt
Phương trình \(d_3\):
\(3\left(x-1\right)+1\left(y-0\right)=0\Leftrightarrow3x+y-3=0\)
Gọi P là giao điểm \(d_2;d_3\Rightarrow\) tọa độ P là nghiệm:
\(\left\{{}\begin{matrix}3x+y-3=0\\x-3y+3=0\\\end{matrix}\right.\) \(\Rightarrow P\left(\dfrac{3}{5};\dfrac{6}{5}\right)\)
Gọi Q là điểm đối xứng N qua \(d_2\Rightarrow P\) là trung điểm NQ
\(\Rightarrow\left\{{}\begin{matrix}x_Q=2x_P-x_N=\dfrac{1}{5}\\y_Q=2y_P-y_N=\dfrac{12}{5}\end{matrix}\right.\) \(\Rightarrow Q\left(\dfrac{1}{5};\dfrac{12}{5}\right)\)
\(\Rightarrow MQ\) đối xứng \(MN\) qua \(d_2\Rightarrow MQ\) là đường thẳng d cần tìm
\(\overrightarrow{MQ}=\left(\dfrac{4}{5};\dfrac{8}{5}\right)=\dfrac{4}{5}\left(1;2\right)\) \(\Rightarrow\) đường thẳng d nhận (2;-1) là 1 vtpt
Phương trình d:
\(2\left(x-\dfrac{1}{5}\right)-1\left(y-\dfrac{12}{5}\right)=0\Leftrightarrow2x-y+2=0\)