Đáp án C
Mặt cầu: x 2 + y 2 + z 2 + 2x - 2y – 2z – 7 = 0 có tâm I(-1; 1;1) và
Mặt cầu: x 2 + y 2 + z 2 + 2x + 2y + 4z + 5= 0 có tâm I’( -1; -1; -2) và R’ = 1
Do đó, hai mặt cầu này cắt nhau.
Đáp án C
Mặt cầu: x 2 + y 2 + z 2 + 2x - 2y – 2z – 7 = 0 có tâm I(-1; 1;1) và
Mặt cầu: x 2 + y 2 + z 2 + 2x + 2y + 4z + 5= 0 có tâm I’( -1; -1; -2) và R’ = 1
Do đó, hai mặt cầu này cắt nhau.
xét các vị trị tương đối của mỗi cặp phẳng cho bởi các phương trình sau.
a) x+2y-z+5=0 và 2x+3y-7z-4=0
b) x-2y+z-3=0 và 2x-y+4z-2=0
c) x+y+z-1=0 và 2x+2y+2z+3=0
d) 3x-2y+3z+5=0 và 9x-6y-9z-5=0
e) x-y+2z-4=0 và 10x-10y+20z-40=0
Trong không gian O x y z cho mặt cầu ( s ) : ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 1 ) 2 = 6 tiếp xúc với hai mặt phẳng ( P ) : x + y + 2 z + 5 = 0 , ( Q ) : 2 x - y + z - 5 = 0 lần lượt tại A và B. Độ dài đoạn thẳng AB là
A. 2 6
B. 3
C. 3 2
D. 2 3
Trong không gian Oxyz, cho biết có hai mặt cầu có tâm nằm trên đường thẳng d: x 2 = y - 1 1 = z + 2 - 1 , tiếp xúc đồng thời với 2 mặt phẳng: ( α ) : x+2y-2z+1=0 và ( β ) : 2x-3y-6z-2=0. Gọi R 1 , R 2 ( R 1 > R 2 ) là bán kính 2 mặt cầu đó. Tỉ số R 1 R 2 bằng
A. 2
B. 3
C. 2
D. 4
Trong không gian với hệ trục tọa độ Oxyz cho hai mặt cầu:
( S 1 ) : x 2 + y 2 + z 2 + 4 x + 2 y + z = 0 ;
( S 2 ) ; x 2 + y 2 + z 2 - 2 x - y - z = 0
cắt nhau theo một đường tròn (C) nằm trong mặt phẳng (P). Cho các điểm A (1; 0; 0), B (0; 2; 0), C (0; 0; 3). Có bao nhiêu mặt cầu tâm thuộc (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA?
A. 4 Mặt cầu.
B. 2 Mặt cầu.
C. 3 Mặt cầu.
D. 1 Mặt cầu.
Trong không gian với hệ tọa độ Oxyz, cho các mặt phẳng P : 2 x − y − z − 2 = 0 ; Q : x − 2 y + z + 2 = 0 ; R : x + y − 2 z + 2 = 0 , T : x + y + z = 0 . Hỏi có bao nhiêu mặt cầu có tâm thuộc (T) và tiếp xúc với P , Q , R ?
A. 1
B. 2
C. 3
D. 4
Có bao nhiêu mặt cầu (S) có tâm thuộc đường thẳng ∆ : x - 3 2 = y - 1 - 1 = z - 1 2 đồng thời tiếp xúc với hai mặt phẳng (α1): 2x+2y+z-6=0 và (α2): x-2y+2z=0
A. 1
B. 0.
C. Vô số
D. 2.
Trong không gian Oxyz, cho biết có hai mặt cầu có tâm cùng nằm trên đường thẳng d : x 2 = y - 1 1 = z + 2 - 1 và tiếp xúc với mặt phẳng ( α ) : x + 2 y - 2 z + 1 = 0 ; ( β ) : 2 x - 3 y - 6 z - 2 = 0 có bán kính lần lượt bằng R 1 , R 2 ( R 1 > R 2 ) Tỉ số R 1 R 2 bằng
B. 3
C. 2
Cho đường thẳng d: x - 1 1 = y - 2 - 2 = z - 2 1 và điểm A (1; 2; 1). Tìm bán kính của mặt cầu có tâm I nằm trên d, đi qua A và tiếp xúc với mặt phẳng (P): x - 2y + 2z + 1 = 0
A. R=2
B. R=4
C. R=1
D. R=3
Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt cầu (S) có tâm nằm trên đường thẳng d : x 1 = y - 1 1 = z - 2 1 và tiếp xúc với hai mặt phẳng (P): 2x - z - 4 = 0, (Q): x – 2y – 2 = 0
A . S : x - 1 2 + y - 2 2 + z - 3 2 = 5
B . S : x - 1 2 + y - 2 2 + z - 3 2 = 5
C . S : x + 1 2 + y + 2 2 + z + 3 2 = 5
D . S : x - 1 2 + y - 2 2 + z - 3 2 = 3