a) Xét tam giác ABF và tam giác AEC có
AF=AC
BAF=CAB+CAF=60+CAB=BAE+60=EAC
AE=AB
=> tam giác ABF = tam giác AEC (c-g-c)
a) Xét tam giác ABF và tam giác AEC có
AF=AC
BAF=CAB+CAF=60+CAB=BAE+60=EAC
AE=AB
=> tam giác ABF = tam giác AEC (c-g-c)
1.cho tam giác nhọn ABC kẻ các đường cao AD, BE, CF, gọi H là trực tâm. Nối EF, ED, FD. chứng minh DA là phân giác góc EDF.
2. Từ một điểm A ở ngoài đường tròn O, vẽ hai cát tuyến của O là ABC và ADE ( B nằm giữa A và C; D nằm giữa A và E). cho biết góc A=42, sđ BD= 48
a) tính số đo cung nhỏ CE
b) chứng minh CD vuông góc BE
Cho tam giác ABC nhọn. Các đường cao AD, BE, CF cắt tại H. Qua A vẽ đường thẳng song song với BE,CF lần lượt cắt CF,BE tại P và Q. Chứng minh: PQ vuông góc với trung tuyến AM của tam giác ABC
Cho tam giác ABC nhọn. Các đường cao AD, BE, CF cắt tại H. Qua A vẽ đường thẳng song song với BE,CF lần lượt cắt CF,BE tại P và Q. Chứng minh: PQ vuông góc với trung tuyến AM của tam giác ABC
Cho tam giác ABC nhọn. Các đường cao AD, BE, CF cắt tại H. Qua A vẽ đường thẳng song song với BE,CF lần lượt cắt CF,BE tại P và Q. Chứng minh: PQ vuông góc với trung tuyến AM của tam giác ABC
Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O;R). Vẽ đường cao BE và CF cắt nhau tại H.
a) Chứng minh: Tứ giác AEHF nội tiếp đường tròn.
b) Chứng minh: AB . CE = CH . BE c) Chứng minh: OA ⊥ EF
Cho tam giác ABC có các góc đều nhọn .Vẽ về phía ngoài tam giác ABC các tam giác vuông câm ABD ,ACE theo thứ tự cân tại B và cân tại C .Gọi M,N lần lượt là chân đường vuông gco1 kẻ từ D và E xuống đường thẳng BC.Chứng minh tằng
a)BM=CN
b)BC=DM+EN
Cho tam giác ABC nhọn nội tiếp (O;R) AB < AC, các đường cao BD, CE
a, Chứng minh BEDC nội tiếp
b, Qua A vẽ tiếp tuyến xy với (O). Chứng minh xy // ED
c, Chứng minh góc EBD = góc ECD
d. Kẻ OH vuông góc BC. Cho góc BAC = 60o, R = 2 cm. Tính diện tích hình viên phân tạo bởi cung nhỏ BC và dây căng cung đó.
cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O bán kính R . Kẻ đường cao AD (D thuộc BC) và đường kính AK . Hạ BE và CF cùng vuông góc với AK ( E thuộc AK , F thuộc AK ).
1) chứng minh tứ giác ABDE nội tiếp.
2) Chứng minh DF song song với BK
3) cho góc ABC = 60 độ , R=4cm. Tính diện tích hình quạt giới hạn bởi OC , OK và cung nhỏ CK .
4) cho BC cố định , A chuyển động trên cung lớn Bc sao cho tam giác ABC có ba góc nhọn . Chứng minh tâm đường tròn ngoại tiếp tam giác DEF là một điểm cố định.
Cho tam giác ABC nhọn có hai đường cao BE,CF. Các điểm M,N,L theo thứ tự là trung điểm của BF,CE,EF. Đường thẳng qua M vuông góc với BL và đường thẳng qua N vuông góc với CL cắt nhau tại K. Chứng minh rằng KB=KC.