không vẽ đồ thị hãy tìm tọa độ các giao điểm của các đồ thị hàm số sau:
a) y=x\(^2\)và y=\(\dfrac{1}{2}\)x b) y=\(-\dfrac{1}{2}x^2\)và y=mx+\(\dfrac{1}{2}m^2-8\)
cho hàm số y = -x và y = \(-\dfrac{1}{2}\)x
a) vẽ trên cùng một hệ trục tọa độ oxy đồ thị của 2 hàm số trên
b) qua điểm H (0;-5) vẽ đường thẳng d song song với trục Ox cắt đường thẳng y = -x và y = \(-\dfrac{1}{2}\)x lần lượt ở A và B tìm tọa độ của các điểm A, B
c) tính chu vi và dienj tích tam giác OAB
Cho hàm số y = (m+1) x+3 (1)
a) Tìm m để cho hàm số (1) là hàm số đồng biến, nghịch biến
b)Vẽ đồ thị (1) với m=1/2
c)Vẽ đồ thị (1) với m=-1\(\dfrac{1}{2}\)
Bài 1: Giải phương trình
a) \(\sqrt{x^2+4x+4}=2\)
b) \(\sqrt{4x-8}-7\sqrt{\dfrac{x-2}{49}}=5\)
Bài 2: Trong mặt phẳng tọa độ Oxy:
a) Vẽ đồ thị (d₁) của hàm số y = \(-\dfrac{1}{2}x+\dfrac{3}{2}\)
b) Gọi A và B là giao điểm của đồ thị (d₁) với các trục tọa độ. Tính diện tích ∆OAB (với O là gốc tọa độ)
Bài 3: Rút gọn
A= \(\dfrac{2\sqrt{x}-4}{3\sqrt{x}-4}+\dfrac{x+22\sqrt{x}-32}{3x-10\sqrt{x}+8}+\dfrac{4+2\sqrt{x}}{\sqrt{x}-2}\:\left(x\:\ge0;\:x\ne4;\:x\ne\dfrac{16}{9}\right)\)
a, Vẽ đồ thị hàm số y=\(\dfrac{1}{2}\)\(^{x^2}\) ( P)
b, Tìm giá trị của m sao cho điểm C (-2;m) thuộc đồ thị (P)
thiết lập đc bảng giá trị và vẽ đc đồ thị của hàm số
a,y=2x2
b,y=\(\dfrac{1}{2}x^2\)
Cho hàm số có đồ thị sau:
(d₁): y = 2x - 3
(d₂): y = \(\dfrac{1}{2}x\)
a) Vẽ 2 đồ thị trên cùng 1 mặt phẳng tọa độ Oxy.
b) Tìm tọa độ giao điểm A của 2 đồ thị trên bằng phép toán.
1) Cho hàm số bậc nhất y = (2m -1)x-4 có đồ thị là đường thẳng (d) \(\left(m\ne\dfrac{1}{2}\right)\)
a) Vẽ đồ thị hàm số
b) Tìm tọa độ giao điểm C của (d) với đồ thị hàm số \(y=3x+2\left(d_1\right)\)
2) Tìm m để (d) cắt trục Ox , Oy lần lượt tại A , B sao cho tam giác AOB cân
Vẽ đồ thị các hàm số sau trên cùng 1 mặt phẳng tọa độ và tìm tọa độ giao điểm của 2 đường thẳng đó:
a) y = 2x và y = -3x + 5
b) y = 3x + 2 và y = \(-\dfrac{1}{2}x+1\)
c) y = \(\dfrac{3}{2}x-2\) và y = \(-\dfrac{1}{2}x\:+2\)
d) y = -2x + 5 và y = x + 2