\(\dfrac{1}{f}=\dfrac{1}{d_1}+\dfrac{1}{d_1'};\left\{{}\begin{matrix}d_2=d_1-2\\d_2'=d_1'+b\end{matrix}\right.;\dfrac{A"B"}{A'B'}=\dfrac{5}{3}\Leftrightarrow\dfrac{d_2'.d_1}{d_1'.d_2}=\dfrac{5}{3}\)
\(\Rightarrow\dfrac{\left(d_1'+b\right).d_1}{d_1'.\left(d_1-2\right)}=\dfrac{5}{3}\)\(\Leftrightarrow\dfrac{20\left(d_1'+b\right)}{d_1'\left(20-2\right)}=\dfrac{5}{3}\)
\(\dfrac{A"B"}{A'B'}=\dfrac{5}{3}\Leftrightarrow\dfrac{k_2}{k_1}=\dfrac{f-d_1}{f-d_2}=\dfrac{5}{3}\Leftrightarrow\dfrac{f-20}{f-20+2}=\dfrac{5}{3}\Rightarrow f=....\)
\(\Rightarrow d_1'=\dfrac{fd_1}{d_1-f}=...;\dfrac{20\left(d_1'+b\right)}{18d_1'}=\dfrac{5}{3}\Rightarrow b=...\)