ΔABE có đường trung tuyến AC bằng 1/2 BE nên ∠(BAE) = 90o.
Vậy AE ⊥ AB.
ΔABE có đường trung tuyến AC bằng 1/2 BE nên ∠(BAE) = 90o.
Vậy AE ⊥ AB.
cho tam giác abc trên tia đối của tia ab lấy điểm d sao cho cd=ca. trên tia đối của tia cb lấy điểm e sao cho ce=cb. qua c vẽ đường thẳng m song song với ab
Cho tam giác ABC vuông tại A. Trên tia đối của tia CA lấy điểm D sao cho CA = CD. Trên tia đối của tia CB lấy điểm E sao cho CE = CB. ( vẽ hình và ghi giả thiết - kết luận)
a) Chứng minh rằng: tam giác ABC = tam giác DEC
b) Chứng minh rằng: góc CDE= 90 độ
c) Cho BE = 20cm, AD=16cm. Tính độ dài cạnh AB
Cho tam giác ABC đều. Vẽ điểm D sao cho B làtrung điểm của CD vẽ điểm E sao cho C là trung điểm của BE. Tính số đo các góc của Tam giác ADE . Bài 2 Cho góc nhọn xOy, gọi C là 1 điểm thuộc tia phân giác của góc xOy . Kẻ CA vuông góc với Ox,(A thuộc Ox), CB vuông góc với Oy(B thuộc Oy) a) Cm CA bằng CB b) Tia BC cắt Ox tại D. tiaAC cắt Oy tại E. so sánh CD và CE c) Cho OC bằng 13 cm , OA bằng 12 cm . Tính độ dài đoạn AC
Cho ABC, trên tia đối của tia CA lấy điểm D sao cho CD = CA, trên tia đối của tia CB lấy điểm E sao cho CE = CB. Chứng minh:
a) ΔABC=ΔDEC
b) góc BAE =góc EBD
giúp mik với mik cần gấp(vẽ giúp mik cái hình lun) Cảm ơn!
Cho tam giác ABC cân tại A.vẽ đường cao AH a) Cho bt AB=10cm , BH= 6cm. Tính độ dài đoạn Ah b) Trên tia đối của tia BC lấy điểm M, trên tia đối của CB lấy điểm N sao cho BM=CN. CM tam giác AMN là tam giác cân c) Từ B vẽ BK vuông góc với AM( K thuộc Am ). từ C vẽ CE vuông góc với AN( E thuộc AN). CM BK=CE
Bài 1: Cho tam giác đều ABC, trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE=BC
a) CM tam giác ADE cân
b) Tính góc DAE
Bài 2: Cho tam giác ABC cân tại A, CE vuông góc với AB, lấy điểm M nằm giữa B và C, vẽ MI vuông góc với AC. (E thuộc AB, I thuộc AB, J thuộc AC). CM MI + MJ = CE
Chứng minh rằng: Nếu tam giác ABC có đường trung tuyến xuất phát từ A bằng một nửa cạnh BC thì tam giác đó vuông tại A.
Ứng dụng: Một tờ giấy bị rách mép (h.65). Hãy dùng thước và compa dựng đường vuông góc với cạnh AB tại A.
ko vẽ hình
Cho \(\Delta\)\(ABC\) cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, kẻ CK vuông góc với AE tại K. Gọi I là giao điểm của hai đường thẳng BH và CK. CMR: \(\Delta\)\(ABH\) = \(\Delta\)\(ACK\)
Cho tam giác ABC, tia phân giác của góc C cắt Ab tại D. Trên tia đối của tia CA lấy điểm E, sao cho CE=CB a. Chứng minh CD//EB b. Tia phân giác góc E cắt đường thẳng CD tại F, vẽ CK vuông EF tại K. Chứng minh CK là tia phân giác góc ECF.