Từ điểm A nằm ngoài đường tròn (O). Vẽ hai tiếp tuyến AB, AC với đường tròn (O) (B, C là hai tiếp điểm).
a) Chứng minh tứ giác ABOC nội tiếp được đường tròn.
b) Vẽ cát tuyến ADE của (O) sao cho cát tuyến ADE nằm giữa 2 tia AO, AB; D, E thuộc đường tròn (O) và D nằm giữa A, E. Chứng minh AB 2 =AD.AE .
c) Gọi F là điểm đối xứng của D qua AO, H là giao điểm của AO và BC. Chứng minh: ba điểm E, F, H thẳng hàng.
Từ một điểm A nằm ngoài ( O;R) vẽ hai tiếp tuyến AB và AC
a) chứng minh ABOC nội tiếp
b) vẽ cát tuyến ADE, chứng minh: AD.AE=AB.AB
c) Gọi I là trung điểm DE, chứng minh : A;O;I;C nằm trên 1 đường tròn
d) chứng minh IA là phân giác của góc BIC
Cho điểm A nằm ngoài đường tròn (O).Từ A kẻ hai tiếp tuyến AB,AC và cát tuyến ADE tới đường tròn (B,C là hai tiếp điểm;D nằm giữa A&E).Gọi H là giao điểm của AO và BC
a,Chứng minh rằng :ABOC là tứ giác nội tiếp
b,Chứng minh rằng :AH.AO=AD.AE
c,Tiếp tuyến tại D của đường tròn (O)cắt AB,AC theo thứ tự tại I và K.Qua điểm O kẻ đường thẳng vuông góc với OA cắt tia AB tại P và cắt tia AC tại Q.Chứng minh rằng IP+KQ>=PQ
Giúp mình với mình cần gấp ạ:
Từ điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB,AC với đường tròn (O), (B,C là 2 tiếp điểm)
a) Chứng minh tứ giác ABOC nội tiếp đường tròn
b) vẽ cát tuyến ADE của(O) sao cho cát tuyến ADE nằm giữa 2 tia AO, AB; D,E thuộc đường tròn (O) và D nằm giữa A,E. CM AB2 = AD.AE
c) Gọi F là điểm đối xứng CỦa D qua OA, H là giao điểm của OA và BC. CM: ba điểm E,F,H thẳng hàng
Từ một điểm A ở ngoài đường tròn (O) kẻ hai tiếp tuyến AB, AC đến (O) (B,C là tiếp điểm). Gọi H là giao điểm của OA và BC, qua H kẻ một đường thẳng vuông góc với OB cắt (O) tại D (D thuộc cung nhỏ BC). Gọi K là trung điểm của DE.
a) Chứng minh: 5 điểm A,B,O,K,C nằm trên 1 đường tròn.
b) Chứng minh: KCDH nội tiếp
c) Chứng minh: AH.AO= AD.AE và tam giác OKH là tam giác cân
Cho điểm A nằm ngoài đường tròn (O,R) từ A kẻ hai tiếp tuyến AB,AC và cát tuyến ADE( B,C là hai tiếp điểm ,O nằm trong góc BAE ) BC cắt OA tại I
a/Chứng minh Tứ giác ABOC nội tiếp và OA vuông góc với BC
b/Chứng minh OI.IA =BC^2/4 và AB.AC = AD.AE
c/Vẽ đường kính BK của (O),tia KD cắt OA tại F. Chứng minh FB vuông góc EB
Cho điểm A nằm ngoài đường tròn ( O,R ) . Vẽ hai tiếp tuyến AB , AC với (O) ( B,C là tiếp điểm ) và cát tuyến ADE koong đi qua O .
a) Chứng minh A,O ,B,C cùng nằm trên đường tròn , xác định tâm của đường tròn này .
b) Chứng minh AB2 = AD.AE
c) Chứng minh BE.CD =BD.CE
d) Kẻ đường kính DM của (O) . Tiếp tuyến tại M của (O) cắt 2 tiếp tuyến AB , AC và cát tuyến ADE lần lượt tại P ,Q và I . Chứng minh IP = MQ
Từ một điểm A ở ngoài đường tròn (O) kẻ hai tiếp tuyến AB, AC đến (O) (B,C là tiếp điểm). Gọi H là giao điểm của OA và BC, qua H kẻ một đường thẳng vuông góc với OB cắt (O) tại D (D thuộc cung nhỏ BC). Gọi K là trung điểm của DE.
a) Chứng minh: 5 điểm A,B,O,K,C nằm trên 1 đường tròn.
b) Chứng minh: KCDH nội tiếp
c) Chứng minh: AH.AO= AD.AE và tam giác OKH là tam giác cân
Từ điểm A ở ngoài đường tròn (0;R) vẽ hai tiếp tuyến AB,AC (B,C là các tiếp điểm ) và các tuyến ADE thuộc nữa mặt phẳng bỏ là đường thẳng OA không chứa điểm B của đường tròn (O) . Gọi H là giao điểm của OA và BC .
a, Chứng minh bốn điểm A,B,O,C cùng thuộc một đường tròn .
b, Chứng minh : AO vuông BC tại H và AH.AO =AD.AE