Câu 17:. Chọn câu đúng:
A. Tứ giác ABCD là hình chữ nhật khi có và .
B. Tứ giác ABCD là hình chữ nhật khi có và .
C. Tứ giác ABCD là hình chữ nhật khi có AB=CD; AD=BC; AC=BD.
D. Tứ giác ABCD là hình chữ nhật khi có AB=CD; AB=BC và AC=BD.
Bài 3.Cho hình thang ABCD (AB // CD) có AD = CD và AC vuông góc BC. Từ C kẻ đường thẳng song song với AD và cắt AB tại E. a) Chứng minh tứ giác AECD là hình thoi. b) Chứng minh tứ giác BEDC là hình bình hành. c) Chứng minh tam giác CEB cân. d) Giả sử tam giác CEB đều. Chứng minh tứ giác ABCD là hình thang cân
Cho tứ giác ABCD có: AB=5cm; AB+BC=12cm; BC+CD=12cm; CD+AD=12cm. CM: tứ giác ABCD là hình bình hành
helpp
Câu 31. Tứ giác ABCD có AB//CD, AD//BC. Tứ giác ABCD là:
A. Hình thang B. Hình thang cân D. Chưa thể xác định dạng tứ giác ABCD
C. Hình bình hành
Câu 32. Điều kiện để hình bình hành là hình thoi?
A.Hình bình hành có bốn góc bằng nhau.
B. Hình bình hành có hai cạnh kề bằng nhau
C. Hình bình hành có một góc vuông
D. Hìnhbình hành có hai đường chéo bằng nhau
Câu 33. Cho hình thoi ABCD có chu vi bằng 16cm, đường cao AH bằng 2cm. Tính các góc của hình thoi?
A. Â = Ĉ = 150°; B = D = 300
B. Â = Ĉ = 30°; B = D = 60°
C. Â = Ĉ = 120°; B = D = 60°
D. Â = Ĉ = 30°; B = D = 1500
cho hình thang ABCD(AB//CD)và AB<CD, qua trung điểm M của cạnh bên BC kẻ đường thẳng // với AD cắt CD ở E VÀ AB ở F
a chứng minh tứ giác AFED là hình bình hành
b SADE=SABEC=1/2SABCD
Cho tứ giác ABCD có ADC+BCD=90° và AD=BC . Gọi M, N, P, Q lần lượt là trung điểm của AB, AC, CD, BD. a) Chúng minh rằng tứ giác MNPQ là hình bình hành. b) đường thẳng PM cắt BC tại E. tính góc PEC. c) chứng minh diện tích MNPQ≥ (AB-CD)²/8. đẳng thức xảy ra khi nào?
PLEASE!❤️🙏
Bài 1: CMR: tứ giác ABCD là hình thang khi:
a. 2 đường chéo AC, BD và đoạn nối trung điểm của AB, CD đồng quy
b. 2 cạnh AD, BC kéo dài và đoạn nối trung điểm của AB, CD đồng quy
c. Giao điểm của AD, BC; giao điểm của 2 đường chéo AC, BD và trung điểm CD thẳng hàng
Bài 2: Cho hình bình hành ABCD. Một đường thẳng d cắt AB, BC, BD lần lượt tại M, N, P.
CMR: BA/BM + BC/BN = BD/BP
Cho tứ giác \(ABCD\) , gọi \(M,N,P,Q\) lần lượt là trung điểm của \(AB,BC,CD,DA\). Biết \(MP=\dfrac{1}{2}\left(AD+BC\right)\), \(NQ=\dfrac{1}{2}\left(AB+CD\right)\). \(CMR:\) tứ giác \(ABCD\) là hình bình hành.
Cho tứ giác ABCD có AD=BC=AB<CD . 2 đg chéo cắt nhau tại O , gọi M là gđ của BC và AD , vẽ hình bình hành AMBK. ĐG thẳng KO cắt BC tại N . CMR AM=BN