Tứ giác abcd có m,n lần lượt là trung điểm của đường chéo ac và bd. gọi g là trọng tâm của tam giác abc. nối gc cắt mn tại o. cm: oc=3og
Tứ giác ABCD có M,N lần lượt là trung điểm của các đường chéo AC và BD. Gọi G là trọng tâm tam giác ABC. Nối GC cắt MN tại O. CM : OC=3OG Giúp mình với mai mình nộp bài rồi T_T
cho tứ giác ABCD. gọi M,N lần lượt là trung điểm của AC và BD. G là trọng tâm của tam giác AGC. GC cắt MN tại o. tính tỉ số OG/OC
Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.
Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.
Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.
Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.
Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .
Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.
Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .
Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé.
Cho hình bình hành ABCD, gọi E và F lần lượt là trung điểm của BC và CD. Đường chéo BD cắt AE và AF lần lượt tại M và N. Chứng minh: a. M là trọng tâm của tam giác ABC, N là trọng tâm của tam giác ADC. b. MB=MN=ND
1)Cho tứ giác ABCD;O là giao điem của AC và BD.M,N lần lượt là trung điểm của BD và AC.G là điểm đoi xứng của O qua M, qua G kẻ 1 đuong thẳng song song với MN cắt AD,BC,AC lần lượt tại P,Q,H.CMR: PG=QH
2)cho hình bình hành ABCD,láy M thuộc BC,N thuộc CD sao cho BN=DM.O là giao điem của BN và DM.CMR:OA là phân giác của góc BOD
3) Cho tứ giác ABCD,hai đường chéo cắt nhau tại O.CMR: Đuong thẳng nối trọng tam 2 tam giác OAB và tam giác OCD vuông góc với đường thẳng nối trực tâm hai tam giác OAD và tam giác OBC
Bài 1: Cho tam giác ABC nhọn(AB<AC), đường cao AH. Gọi M, N, P lần lượt là trung điểmBC, AC, AB . CMR: HMNP là hình thang cân
Bài 2: Cho tứ giác ABCD gọi M, N lần lượt là trung điểm AD và BC. Gọi I là trung điểm của MN, AI cắt DN tại G. Chứn minh: G là trọng tâm tam giác BCD
1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.
2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.
3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN
4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.
5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3
Tứ giác ABCD có đường chéo AC và BD vuông góc vói nhau . Gọi M; N; L lần lượt là trung điểm của AB AD và đường chéo AC. Từ M kẻ đường thẳng vuông góc với CD cắt AC tại H. Chứng minh : H là trực tâm của tam giác MNL