a, M C D ^ = B I D ^ = 1 2 s đ C D ⏜
b, Sử dụng kết quả câu a)
a, M C D ^ = B I D ^ = 1 2 s đ C D ⏜
b, Sử dụng kết quả câu a)
từ điểm M nằm ngoài đường tròn(O) ,vẽ 2 tiếp tuyến MC,MDcủa (O) (C,D là 2 tiếp điểm),kẻ một cát tuyến MAB vứi (O) sao cho điểm A nằm giữa 2 điểm M,B và tâm O nằm trong góc BMC. gọi I là trung điểm của dây AB
a. c/m 5 điểm O,I,D,M,C cùng thuộc một đtr
b. gọi H là giao điểm của OM và CD. c/m MH.MO=MA.MB
c.tia OI cắt tiếp tuyến A của đtr (O) tại N.c/m 3 điểm N,C,D thẳng hàng
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
Cho đường tròn (O; R) đường kính AB, kẻ đường thẳng d ⊥ BA tại C (C nằm giữa A và B). Lấy điểm M nằm bên ngoài đường tròn và nằm trên đường thẳng d. Gọi D là giao điểm của MA và (O); E là giao điểm của MB và (O). Tiếp tuyến của (O) tại D cắt MC tại I; H là giao điểm của AE với MC.
a) Chứng minh rằng: BCHE là tứ giác nội tiếp và AH.AE = AB.AC
b) Chứng minh rằng: ∆DHI là tam giác cân
cho đường tròn (o) và điểm A nằm ngoài đường tròn. vẽ cấc tiếp tuyến AB,AC với đường tròn (o) tại B và C.AO cắt đường tròn tại M và N (M nằm giữa A và O). Trên cung nhỏ MC lấy điểm D(D khác M và D khác C). AD cắt đường tròn tại điểm thứ hai là E. I là trung điểm của DE
a,Chứng minh A;B;I;O cùng thuộc một đương tròn
b,Gọi H là giao điểm của AO và BC. Chứng minh AM.AN=AH.AO
c,Qua D kẻ đường thẳng song song với AB cắt BC tại K.Chứng minh IK // BE
Xét đường thẳng (d) cổ định ở ngoài (0;R) (khoảng cách từ 0 đến (d) không nhỏ hơn R2). Từ một điểm M nằm trên đường thắng (d) ta dựng các tiếp tuyến MA, MB đến (O:R) ( A,B là các tiếp điểm) và dựng cát tuyên MCD (tia MC nằm giữa hai tia MO, MA và MC < MD). Gọi E là trung điểm của CD, H là giao điểm của AB và MO. a, Chứng minh: 5 điểm M,A,E,O,B cùng nằm trên một đường tròn. b, Chứng minh: MC.MD= MA² = MO² –R² . c. Chứng minh: Các tiếp tuyến tại C,D của đường tròn (O;R) cắt nhau tại một điểm nằm trên đường thắng AB. d. Chứng minh: Đường thắng AB luôn đi qua một điểm cố định. e, Chứng minh: Một đường thắng đi qua O vuông góc với MO cắt các tia MA, MB lần lượt tại PQ. Tìm GTNN của SMPO. Tìm vị trí điểm M để AB nhỏ nhất.
CẦN GẤP CÂU (b)
Từ điểm I nằm ngoài đường tròn (O;R) kẻ cát tuyến IAB đến (O) không qua tâm O (A nằm giữa I và B). Các tiếp tuyến với (O) tại A và B cắt nhau ở M. Kẻ MH vuông góc OI tại H, tia MH cắt (O) tại C và D (MC<MD), AB cắt OM tại K.
a, CMR: K là trung điểm của AB và 4 điểm M, O, B, H cũng thuộc một đường tròn.
b, CMR: ID là tiếp tuyến của (O)
GIẢI XONG CÂU (b) THÌ GIẢI GIÚP CÂU (a) LUÔN
Cho đường tròn (O) và một điểm M nằm ngoài đường tròn . Từ M kẻ 2 tiếp tuyến MA;MB ( A;B là tiếp điểm ) . Gọi I là giao điểm của MO và AB .
a) Từ B kẻ đường kính BC của (O) , MC cắt (O) tại D ( D khác C) Chứng minh MD.MC=MI.MO
b) Từ O kẻ đường thẳng vuông góc với MC cắt BA tại F . Chứng minh FC là tiếp tuyến của (O)
cho đường tròn (O) và điểm M nằm ngoài đường tròn (O). Từ điểm M kẻ tiếp tuyến MA, MC(A<C là các tiếp điểm). Từ M kẻ đường thẳng bất kì không đi qua O cát đường tròn tại B và D( B nằm giữa M và D). H là giao điểm của OM và AC. Từ C kẻ đường thẳng Song song với BD cắt (O) tại E( E#C) K là giao điểm cảu AE và BD. Chứng minh:
a, tứ giác OAMC nội tiếp
b, K là trung điểm của BD
c, AC là phân giác của góc BHD
Từ điểm M nằm bên ngoài đường tròn (O) vẽ cát tuyến MCD không đi qua tâm O và hai tiếp tuyến MA,MB đến đường tròn (O) ( AB là các tiếp điểm và C nằm giữa M, D)
a) C/m MA bình= MC.MD
b) Gọi I là trung điểm của CD. C/m 5 điểm M, A, O, I, B cùng nằm trên một đường tròn.
c) Gọi H là giao điểm của AB và MO. C/m tứ giác CHOD nội tiếp đường tròn
d) Gọi K là giao điểm của các tiếp tuyến tại C và D của đường tròn (O). C/m A,B,K thẳng hàng.