Từ điểm \(A\) nằm ngoài đường tròn \(\left(O;R\right)\), kẻ các tiếp tuyến \(AB,AC\) với đường tròn \(\left(O\right)\) ở \(E\) (\(E\) khác \(D\)). Gọi \(H\) là giao điểm của \(AO\) và \(BC\).
\(a\)) Chứng minh \(4\) điểm \(A,B,O,C\) cùng thuộc một đường tròn và \(AO\perp BC\) tại \(H\).
\(b\)) Chứng minh \(AE\cdot AD=AH\cdot AO\).
\(c\)) Gọi \(I\) là trung điểm của \(HA\). Chứng minh tam giác \(AIB\) đồng dạng với tam giác \(BHD\).