Đặt A = {1, 2, 3, 4, 5, 6}.
n(A) = 6.
Chọn một số nhỏ hơn 432.000 ta có hai cách chọn :
Cách 1 : Chọn số có chữ số hàng trăm nghìn nhỏ hơn 4.
+ Chọn chữ số hàng trăm nghìn : Có 3 cách (1, 2 hoặc 3).
+ Sắp xếp 5 chữ số còn lại : Có P 5 = 120 cách.
⇒ Theo quy tắc nhân: Có 3 . 120 = 360 số thỏa mãn.
Cách 2 : Chọn số có chữ số hàng trăm nghìn bằng 4. Tiếp tục có 2 cách thực hiện.
- Chọn chữ số hàng chục nghìn nhỏ hơn 3 :
+ Chọn chữ số hàng chục nghìn : Có 2 cách (Chọn 1 hoặc 2).
+ Sắp xếp 4 chữ số còn lại : Có P 4 = 24 cách.
⇒ Theo quy tắc nhân: Có 2 . 24 = 48 số thỏa mãn.
- Chọn chữ số hàng chục nghìn bằng 3, khi đó :
+ Chữ số hàng nghìn : Có 1 cách chọn (Phải bằng 1).
+ Sắp xếp 3 chữ số còn lại : Có P 3 = 6 cách chọn
⇒ Theo quy tắc nhân: Có 1 . 6 = 6 số thỏa mãn.
⇒ Theo quy tắc cộng: Có 48 + 6 = 54 số thỏa mãn có chữ số hàng trăm nghìn bằng 4.
⇒ Có: 360 + 54 = 414 số nhỏ hơn 432 000.