a: góc OBA+góc OCA=180 độ
=>ABOC nội tiếp
b: Xét ΔABE và ΔADB có
góc ABE=góc ADB
góc BAE chung
=>ΔABE đồng dạng với ΔADB
=>AB/AD=AE/AB
=>AB^2=AD*AE
a: góc OBA+góc OCA=180 độ
=>ABOC nội tiếp
b: Xét ΔABE và ΔADB có
góc ABE=góc ADB
góc BAE chung
=>ΔABE đồng dạng với ΔADB
=>AB/AD=AE/AB
=>AB^2=AD*AE
Từ điểm A nằm ngoài đường tròn (O;R), kẻ các tiếp tuyến AB,AC với đường tròn (O), (B,C là các tiếp điểm). Vẽ đường kính BD của đtròn (O), AD cắt đtròn (O) ở E (E≠D). Gọi H là giao điểm của AO và BC
a/ CM 4 điểm A,B,O,C cùng thuộc 1 đtròn và AO vuông với BC tại H
b/ CM AE.AD=AH.AO
c/ Gọi I là trung điểm của HA. CM △AIB đồng dạng với △BH
Giúp mình với ạ!!!!!!
Bài 4: Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Vẽ đường kính BD của đường tròn (O) a) Chứng minh: OA BC và DC // OA. b) Đường thẳng AD cắt (O) tại điểm thứ hai là E. Chứng minh: AE.AD = AC2
Từ điểm A ở ngoài đường tròn (O;R) vẽ 2 tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Gọi H là chân đường vuông góc kẻ từ B đến đường kính CD. a) Chứng minh 4 điểm A, B, C, O cùng thuộc 1 đường tròn b) Chứng minh BD // OA c) Gọi giao điểm của BH và AD là I. Chứng minh I là trung điểm của BH.
Từ điểm A ở ngoài (O; R) vẽ hai tiếp tuyến AB, AC( B, C là hai tiếp điểm). Gọi H là giao điểm của OA và BC a) Chứng minh OA vuông góc BC và OH.OA = R2 b) Vẽ đường kính BE của (O), AE cắt (O) tại D. Chứng minh ED.EA = 4OH.OA c) Vẽ CI vuông góc BE tại I, AE cắt CI tại K. Chứng minh HK // BE.
Cho đường tròn(O,R) và 1 điểm A nằm ngoài đường tròn. Từ A vẽ 2 tiếp tuyến AB và AC ( B,C là tiếp điểm). Kẻ đường kính BD, đường thẳng vuông góc với BD tại O cắt đường thẳng DC tại E.
a)Chứng minh: OABC và DC//OA.
b) Chứng minh AEDO là hình bình hành.
c) Đường thẳng BC cắt OA và OE lần lượt tại I và K. Chứng minh: IK.IC+IA.OI=
Bài 7 (3 điểm). Từ điểm M ở ngoài đường tròn (O; R), vẽ hai tiếp tuyến MA, MB với đường tròn (0) (A, B là 2 tiếp điểm). OM cắt AB tại H. Vẽ đường kính BC của đường tròn (O).
a) Chứng minh OM 1 AB và AC // MO.
b) Chứng minh OH. OM = R2 và OCH = OMC
Từ điểm A nằm ngoài đường tròn (O;R) vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Trên bán kính OC lấy điểm M. Tia AM cắt (O) tại D và E (D nằm giữa A và E). Đoạn thẳng OA cắt BC tại H.
a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn
b) Chứng minh AC2=AD.AE.
c) Chứng minh góc AHD = góc AEO
d) Vẽ đường thẳng qua O vuông góc với DE và vẽ tiếp tuyến của đường tròn (O) tại E. Hai đường thẳng này cắt nhau tại I. Chứng minh B, C, I thẳng hàng.
Cho (O;R).từ điểm A nằm ngoài (O) sao cho OA=2R vẽ tiếp tuyến AB của đường tròn (O) (B là tiếp điểm ) kẻ dây BC vuông góc OA a) chứng minh : AC là tiếp tuyến của đường tròn(O) b)Qua O vẽ đường vuông góc với OC cắt AB tại M. Chứng minh rằng: tam giác OMA tà tam giác cân c) gọi N là giao điểm của OA với đường tròn (O) ,tia MN Cắt AC tại K .chứng minh rằng:MK là tiếp tuyến của đường tròn (O) d) tính chu vi tam giác AMK theo R
Cho điểm A nằm ngoài đường tròn (O). Quả A vẽ hai đường tiếp tuyến AB, AC với (O) (B,C là các tiếp điểm). a) Chứng minh các điểm A,B,C,O cùng thuộc một đường tròn, tìm tâm của đường tròn đó. b) Vẽ đường kính BE của (O), AE cắt (O) tại F (F khác E). Chứng minh OA vuông góc với BC tại M rồi từ đó suy ra OB²=OM.OA c) Gọi G là trung điểm của EF,OG cắt BC tại H. Chứng minh OM.OA=OG.OH d) Chứng minh EH là tiếp tuyến của đường tròn (O)