Chương II - Đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc Nhi

Cho điểm A nằm ngoài đường tròn (O). Quả A vẽ hai đường tiếp tuyến AB, AC với (O) (B,C là các tiếp điểm). a) Chứng minh các điểm A,B,C,O cùng thuộc một đường tròn, tìm tâm của đường tròn đó. b) Vẽ đường kính BE của (O), AE cắt (O) tại F (F khác E). Chứng minh OA vuông góc với BC tại M rồi từ đó suy ra OB²=OM.OA c) Gọi G là trung điểm của EF,OG cắt BC tại H. Chứng minh OM.OA=OG.OH d) Chứng minh EH là tiếp tuyến của đường tròn (O)

a: Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

=>ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại M và M là trung điểm của BC

Xét ΔOBA vuông tại B có BM là đường cao

nên \(OM\cdot OA=OB^2\)

c: Ta có: ΔOEF cân tại O

mà OG là đường trung tuyến

nên OG\(\perp\)EF

Xét ΔOGA vuông tại G và ΔOMH vuông tại M có

góc GOA chung

Do đó: ΔOGA đồng dạng với ΔOMH

=>OG/OM=OA/OH

=>\(OM\cdot OA=OG\cdot OH\)

d: Ta có: \(OM\cdot OA=OG\cdot OH\)

\(OM\cdot OA=OB^2\)

OB=OE

Do đó: \(OE^2=OG\cdot OH\)

=>\(\dfrac{OE}{OG}=\dfrac{OH}{OE}\)

Xét ΔOEH và ΔOGE có

\(\dfrac{OE}{OG}=\dfrac{OH}{OE}\)

\(\widehat{EOH}\) chung

Do đó: ΔOEH đồng dạng với ΔOGE

=>\(\widehat{OEH}=\widehat{OGE}\)

=>\(\widehat{OEH}=90^0\)

=>HE là tiếp tuyến của (O)


Các câu hỏi tương tự
Tuấn Anh
Xem chi tiết
Nhật Trương
Xem chi tiết
Huỳnh như
Xem chi tiết
Lại Văn Định
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Thảo Anh
Xem chi tiết
vy kim bình
Xem chi tiết
Trần Thị Phương Kim
Xem chi tiết
Người Bí Ẩn
Xem chi tiết