Đáp án C
Một tam giác được tạo bởi 3 điểm không thẳng hàng
Lấy 2 điểm bất kỳ thuộc ∆ và 1 điểm không thuộc đường thẳng ∆ ta được 1 tam giác
Do đó có C 6 2 . 1 = 15 tam giác
Đáp án C
Một tam giác được tạo bởi 3 điểm không thẳng hàng
Lấy 2 điểm bất kỳ thuộc ∆ và 1 điểm không thuộc đường thẳng ∆ ta được 1 tam giác
Do đó có C 6 2 . 1 = 15 tam giác
Từ 6 điểm phân biệt thuộc đường thẳng △ và một điểm không thuộc đường thẳng △ ta có thể tạo được tất cả bao nhiêu tam giác?
A. 210
B. 30
C. 15
D. 35
Cho hai đường thẳng song song d 1 , d 2 . Trên d 1 lấy 6 điểm phân biệt, trên d 2 lấy 4 điểm phân biệt. Xét tất cả các tam giác được tạo thành khi nối các điểm đó với nhau. Chọn ngẫu nhiên một tam giác. Xác suất để thu được tam giác có hai đỉnh thuộc d 1 là:
A. 2 9
B. 5 9
C. 3 8
D. 5 8
Cho hai đường thẳng song song d1, d2. Trên đường thẳng d1 lấy 10 điểm phân biệt, trên đường thẳng d2 lấy 15 điểm phân biệt. Hỏi có bao nhiêu tam giác tạo thành mà ba đỉnh của nó được chọn từ 25 điểm vừa nói ở trên?
A. C 10 2 C 15 1
B. C 10 1 C 15 2
C. C 10 2 C 15 1 + C 10 1 C 15 2
D. C 10 2 C 15 1 C 10 1 C 15 2
Cho hai đường thẳng song song a; b. Trên đường thẳng a lấy 10 điểm phân biệt, trên b lấy 15 điểm phân biệt. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 25 vừa nói trên.
A. C 10 2 C 15 1
B. C 10 1 C 15 2
C. C 10 2 C 15 1 + C 10 1 C 15 2
D. C 10 2 C 15 1 . C 10 1 C 15 2
Cho 6 điểm A, B, C, D, E, F cùng thuộc một đường tròn. Hỏi có thể tạo ra được bao nhiêu tam giác có ba đỉnh là 3 trong 6 điểm trên?
A. 20
B. 120
C. 18
D. 9
Cho hai đường thẳng song song a và b. Trên đường thẳng a cho 6 điểm phân biệt, trên đường thẳng b cho 8 điểm phân biệt. Hỏi có bao nhiêu tam giác có các đỉnh là các điểm đã cho trên hai đường a và b.
A. 364
B. 420
C. 288
D. 210
Cho hai đường thẳng song song a và b. Trên đường thẳng a lấy 6 điểm phân biệt; trên đường thẳng b lấy 5 điểm phân biệt. Chọn ngẫu nhiên 3 điểm trong các điểm đã cho trên hai đường thẳng a và b. Tính xác xuất để 3 điểm được chọn tạo thành một tam giác.
A. 5 11
B. 60 169
C. 2 11
D. 9 11
Trong mặt phẳng, có 6 điểm phân biệt sao cho không có ba điểm nào thẳng hàng. Hỏi có thể lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập điểm đã cho?
Cho hai đường thẳng song song a và b. Trên đường thẳng a lấy 6 điểm phân biệt. Trên đường thẳng b lấy 5 điểm phân biệt. Chọn ngẫu nhiên 3 điểm. Xác định số phần tử của biến cố A: "Ba điểm được chọn tạo thành một tam giác".
A. 135
B. 165
C. 990
D. 360