Phép vị tự tâm I(1; 2) tỉ số k = 5 biến điểm M(2; -3) thành điểm M’(x; y)
⇔ I M ' → = 5 I M → ⇔ x − 1 = 5 2 − 1 y − 2 = 5 − 3 − 2 ⇔ x = 6 y = − 23
Suy ra M’(6; -23).
Đáp án C
Phép vị tự tâm I(1; 2) tỉ số k = 5 biến điểm M(2; -3) thành điểm M’(x; y)
⇔ I M ' → = 5 I M → ⇔ x − 1 = 5 2 − 1 y − 2 = 5 − 3 − 2 ⇔ x = 6 y = − 23
Suy ra M’(6; -23).
Đáp án C
Trong mặt phẳng tọa độ Oxy phép vị tự tâm I(0;2) tỉ số k = -1/2 , biến điểm M(12;-3) thành điểm M’ có tọa độ:
A. M'(12;-1/2)
B. M'(-6;9/2)
C. M'(6;-2)
D. M'(-6;12)
Trong mặt phẳng tọa độ Oxy phép vị tự H(1;2) tỉ số k = -3 điểm M(4;7) biến thành điểm M’ có tọa độ
A. M'(-13;-8)
B. M'(8;13)
C. M'(-8;-13)
D. M'(-8;13)
Trong mặt phẳng tọa độ Oxy phép vị tự tâm O(0;0) tỉ số k = -3, biến điểm M(-4;3) thành điểm M’ có tọa độ
A. M'(-12;-9)
B. M'(12;9)
C. M'(-9;12)
D. M'(12;-9)
Trong mặt phẳng tọa độ Oxy phép đồng dạng F hợp thành bởi phép vị tự tâm O(0;0) tỉ số k = 1/2 và phép đối xứng trục Ox biến điểm M(4;2) thành điểm có tọa độ.
A.(2;-1)
B. (8;1)
C.(4;-2)
D. (8;4)
Trong mặt phẳng tọa độ Oxy, phép đồng dạng F hợp thành bởi phép vị tự tâm O(0;0) tỉ số k= 1 2 và phép đối xứng trục Ox biến điểm M(4;2) thành điểm có tọa độ:
A. (2;-1)
B. (8;1)
C. (4;-2)
D. (8;4)
Trong mặt phẳng Oxy cho điểm M(1;2) Phép tịnh tiến theo vecto u → = 2 ; - 6 biến điểm M thành điểm M' có tọa độ là
A. (-2;6)
B. (2;5)
C. (2;-6)
D. (4;-2)
Trong mặt phẳng Oxy cho điểm M(2;-6) và điểm I(1;4). Phép đối xứng tâm I biến M thành M’ thì tọa độ M’ là:
A. M’(0;14)
B. M’(14;0)
C. M’(-3/2;-2)
D. M’(-1/2;5)
Trong mặt phẳng Oxy cho điểm M(-5;9). Phép đối xứng tâm I(2; -6) biến M thành M’ thì tọa độ M’ là.
A. M'(9;-15)
B. M'(9;-3)
C.M'(9;-21)
D. M'(1;-3)
Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm A(1; 5), B(‒3; 2). Biết các điểm A, B theo thứ tự là ảnh của các điểm M, N qua phép vị tự tâm O, tỉ số k = -2 . Độ dài đoạn thẳng MN là
A. 5 2
B. 5
C. 4
D. 10