Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc Hân

Trong mặt phẳng tọa độ Oxy cho hai điểm A ( 12 ) ; B ( -1 ; 1 ) . Điểm M thuộc trục Ox thỏa mãn tam giác MAB cân tại A . Khi đó độ dài đoạn OM bằng?

Akai Haruma
29 tháng 5 2021 lúc 16:56

Lời giải:

Gọi tọa độ $M$ là $(a,0)$. $H$ là trung điểm của $MB$

Khi đó $H$ có tọa độ \(H(\frac{a-1}{2}, \frac{1}{2})\)

\(\overrightarrow{MB}=(-1-a,1); \overrightarrow{AH}=(\frac{a-3}{2}, \frac{-3}{2})\)

Vì $MAB$ cân tại $A$ nên trung tuyến $AH$ đồng thời là đường cao. Do đó:

\(\overrightarrow{MB}.\overrightarrow{AH}=0\Leftrightarrow (-1-a).\frac{a-3}{2}-\frac{3}{2}=0\Leftrightarrow a=0\) hoặc $a=2$

(đều thỏa mãn)

Khi đó: 

$OM=0$ hoặc $OM=2$


Các câu hỏi tương tự
Ngọc Hân
Xem chi tiết
Hoàng Anh Quân
Xem chi tiết
Minh Thư Hồ
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Hạnh Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết