Lời giải:
Gọi tọa độ $M$ là $(a,0)$. $H$ là trung điểm của $MB$
Khi đó $H$ có tọa độ \(H(\frac{a-1}{2}, \frac{1}{2})\)
\(\overrightarrow{MB}=(-1-a,1); \overrightarrow{AH}=(\frac{a-3}{2}, \frac{-3}{2})\)
Vì $MAB$ cân tại $A$ nên trung tuyến $AH$ đồng thời là đường cao. Do đó:
\(\overrightarrow{MB}.\overrightarrow{AH}=0\Leftrightarrow (-1-a).\frac{a-3}{2}-\frac{3}{2}=0\Leftrightarrow a=0\) hoặc $a=2$
(đều thỏa mãn)
Khi đó:
$OM=0$ hoặc $OM=2$