Gọi `M(2y-5;y) in \Delta`
Ta có: `AM=\sqrt{10}`
`<=>|\vec{AM}|=\sqrt{10}`
`<=>\sqrt{(2y-5-2)^2+(y-1)^2}=\sqrt{10}`
`<=>4y^2-28y+49+y^2-2y+1=10`
`<=>[(y=4),(y=2):}`
`=>[(M(3;4)),(M(-1;2)):}`
Gọi `M(2y-5;y) in \Delta`
Ta có: `AM=\sqrt{10}`
`<=>|\vec{AM}|=\sqrt{10}`
`<=>\sqrt{(2y-5-2)^2+(y-1)^2}=\sqrt{10}`
`<=>4y^2-28y+49+y^2-2y+1=10`
`<=>[(y=4),(y=2):}`
`=>[(M(3;4)),(M(-1;2)):}`
cho đường thẳng Δ : x + y - 2 = 0 và điểm A( 2; 2). Tìm tọa độ điểm M thuộc đường thẳng Δ sao cho khoảng cách từ A đến M nhỏ nhất.
Trong mặt phẳng Oxy, cho ba điểm A(-3;5),B(4;6)
a.Viết phương trình đường thẳng qua 2 điểm A,B
b.Viết phương trình d qua A và song song (d1): 3x-y+5=0
c.Tìm M trên (d1) sao cho khoảng cách từ M đến (Δ): x-2y+5=0 là 2\(\sqrt{5}\)
d.Viết phương trình (d2) qua C(3;1) và cách đều A,B
Trong mặt phẳng toạ độ Oxy, cho hai điểm A(3;1),B(4;-2) và đường thẳng d: -x+2y+1=0. a) Viết phương trình tham số của Δ đi qua A song song với đường thẳng d b) Viết phương trình tổng quát của Δ đi qua B và vuông góc với đường thẳng d c) Viết phương trình đường tròn có bán kính AB
Trong mặt phẳng Oxy, cho điểm A(2;-4), đường thẳng Δ: x = -3 + 2t, y = 1 + t và đường tròn (C): x^2 + y^2 – 2x – 8y – 8 = 0.
a. Tìm một vectơ pháp tuyến n của đường thẳng Δ. Lập phương trình tổng quát của đường thẳng d, biết d đi qua điểm A và nhận n làm vectơ pháp tuyến.
b. Viết phương trình đường tròn (T), biết (T) có tâm A và tiếp xúc với Δ.
c. Gọi P, Q là các giao điểm của Δ và (C). Tìm toạ độ điểm M thuộc (C) sao cho tam giác MPQ cân tại M.
cho mặt phẳng tọa độ Oxy,lập pt đường tròn đi qua 2 điểm A(-1,1),B(1,-3) và có tâm nằm trên đường thẳng Δ:2x-y+1=0
cho mặt phẳng tọa độ Oxy,lập pt đường tròn đi qua 2 điểm A(-1,1),B(1,-3) và có tâm nằm trên đường thẳng Δ:2x-y+1=0
trong mặt phẳng Oxy, cho điểm I (2;-1) và đường thẳng Δ:3x+4y+3=0.Viết phương trình đường tròn tâm I cắt Δ tại hai điểm phân biệt A,B sao cho diện tích tam giác IAB = 4
Trong mặt phẳng Oxy, cho đường tròn (C): x²+y² -2x +4y=0 và đường thẳng delta: x+2y+7=0. Tìm tọa độ điểm M€(C) sao cho khoảng cách từ điểm M đến đường thẳng delta lớn nhất.
Trong mặt phẳng với hệ tọa độ Oxy. Cho đường tròn (C) : x2+ y2- 4x -2y -1= 0 và đường thẳng d: x+ y+1= 0. Tìm những điểm M thuộc đường thẳng d sao cho từ điểm M kẻ được đến (C) hai tiếp tuyến hợp với nhau góc 900.