a → ( 2 ; 1 ) ; b → ( − 4 ; 7 ) ⇒ a → . b → = 2. ( − 4 ) + 1.7 = − 1
CHỌN B
a → ( 2 ; 1 ) ; b → ( − 4 ; 7 ) ⇒ a → . b → = 2. ( − 4 ) + 1.7 = − 1
CHỌN B
Trong mặt phẳng tọa độ Oxy, cho A(2; 1), B(3; -2), C(5; 7). Giá trị của A B → . A C → là
A. 15
B. 21
C. -15
D. -21
1.Trong mặt phẳng tọa độ Oxy cho hình bình hành ABCD với A (- 6;1); B (2;2) C (1;5) tọa độ đỉnh D là:
A. (5;2)
B. (-7;4)
C. (5;4)
D. (7;-4)
2.Trong mặt phẳng tọa độ Oxy cho tam giác ABC với A (- 1;3); B (2;1) C (5;5) tọa độ đỉnh D là của hình bình hành ABCD:
A. (0;4)
B. (8;1)
C. (8;3)
D. (-8;3)
Hướng dẫn em cách làm với ạ. Em cảm ơn nhiều.
Trong mặt phẳng tọa độ Oxy, cho bốn điểm A( 7; -3); B( 8; 4); C ( 1; 5) và D(0; -2). Khẳng định nào sau đây đúng?
A. A C → ⊥ C B → .
B. Tam giác ABC đều.
C. Tứ giác ABCD là hình vuông.
D. Tứ giác ABCD không nội tiếp đường tròn.
Trong mặt phẳng Oxy, cho A(1;0), B(3;-4), C(3;-2). Gọi I là trung điểm của AC . Tọa độ của \(\overrightarrow{BI}\)là:
A. (-1;3) B. (5;3) C. (-1;-5) D. (5;-5)
Trong mặt phẳng Oxy, cho A( -2; 0) ; B( 5; -4) ; C( -5; 1). Tọa độ điểm D để tứ giác ABCD là hình bình hành là:
A. D( -8; 5).
B. D( 5; 8).
C. D( 8; 5).
D. D( 8; -5).
Trong mặt phẳng tọa độ Oxy , cho A(2; 1) . Điểm B là điểm đối xứng của A qua trục hoành. Tọa độ điểm B là:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; 1), B(4; 13), C(5; 0). Tọa độ trực tâm H của tam giác ABC là
A.(2; 2)
B. (1; 1)
C.( -2; -2)
D. (-1; -1)
Trên mặt phẳng tọa độ Oxy cho bốn điểm: A(7; -3), B(8; 4), C(1; 5), D(0; –2). Chứng minh rằng tứ giác ABCD là hình vuông.
Trong mặt phẳng tọa độ Oxy, cho hai vectơ a → = − 3 ; 2 và b → = − 1 ; − 7 . Tìm tọa độ vectơ c → biết c → . a → = 9 và c → . b → = − 20.
A. c → = − 1 ; − 3 .
B. c → = − 1 ; 3 .
C. c → = 1 ; − 3 .
D. c → = 1 ; 3 .