Trong không gian với hệ toạ độ Oxyz, cho hai điểm A (2;-3;2), B (3;5;4). Tìm toạ độ điểm M trên trục Oz sao cho MA²+MB² đạt giá trị nhỏ nhất.
A. M (0;0;49)
B. M (0;0;67)
C. M (0;0;3)
D. M (0;0;0).
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A (2; -3; 2), B (3; 5; 4). Tìm toạ độ điểm M trên trục ?z sao cho MA2 + MB2 đạt giá trị nhỏ nhất.
A. M (0; 0; 49)
B. M (0; 0; 67)
C. M (0; 0 ;3)
D. M (0; 0; 0)
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(2; -3; 2), B (3; 5; 4). Tìm toạ độ điểm M trên trục Oz sao cho M A 2 + M B 2 đạt giá trị nhỏ nhất.
A. M (0; 0; 49).
B. M (0; 0; 67)
C. M (0; 0 ;3)
D. M (0; 0; 0)
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A (2;-3;2), B (3;5;4). Tìm toạ độ điểm M trên trục Oz so cho MA²+MB² đạt giá trị nhỏ nhất.
A. M (0;0;49)
B. M (0;0;67)
C. M (0;0;3)
D. M (0;0;0)
Trong không gian với hệ toạ độ Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua M và cắt các trục toạ độ Ox, Oy, Oz lần lượt tại các điểm A, B, C không trùng với gốc toạ độ sao cho M là trực tâm của tam giác ABC. Trong các mặt phẳng sau, tìm mặt phẳng song song với mặt phẳng (P).
Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(2;-3;7), B(0;4;1), C(3;0;5), D(3;3;3). Gọi M là điểm nằm trên mặt phẳng (Oyz) sao cho biểu thức M A → + M B → + M C → + M D → đạt giá trị nhỏ nhất. Khi đó tọa độ M là
A. M(0; 1; -4)
B. M(2; 1; 0)
C. M(0; 1; -2)
D. M(0; 1; 4)
Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(2;-3;7), B(0;4;1), C(3;0;5) và D(3;3;3). Gọi M là điểm nằm trên mặt phẳng (Oyz) sao cho biểu thức M A → + M B → + M C → + M D → đạt giá trị nhỏ nhất. Khi đó tọa độ của M là:
A. M (0;1;-4)
B. M (2;1;0)
C. M (0;1;-2)
D. M (0;1;4)
Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(1 ;1 ;1), B(2 ;-1 ;2), C(3 ;4 ;-4). Giao điểm M của trục Ox với mặt phẳng (ABC) là điểm nào dưới đây?
A. M(1;0;0)
B. M(2;0;0)
C. M(3;0;0)
D. M(-1;0;0)
Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (P) đi qua điểm M (1;2;3) và cắt các tia Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho T = 1 O A 2 + 1 O B 2 + 1 O C 2 đạt giá trị nhỏ nhất.