Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;-1), B(2;1;1), C(0;1;2). Gọi điểm H(x;y;z) là trực tâm tam giác ABC. Giá trị của S = a + y + z là:
A. 4
B. 6
C. 5
D. 7
Trong không gian với hệ tọa độ Oxyz cho ba điểm A(8;5;-11), B(5;3;-4), C(1;2;-6) và mặt ( S ) : ( x - 2 ) 2 + ( y - 4 ) 2 + ( z - 1 ) 2 = 9 . Gọi điểm M(a;b;c) là điểm trên (S) sao cho M A → - M B → - M C → đạt giá trị nhỏ nhất. Hãy tìm a+b
A. 6
B. 2
C. 4
D. 9
Trong không gian với hệ trục tọa độ Oxyz cho 3 điểm A (1; 1; 1), B (0; 1; 2), C (-2; 1; 4) và mặt phẳng (P): x - y + z + 2 = 0. Tìm điểm N ∈ (P) sao cho S= NA2 + NB2 + NC2 đạt giá trị nhỏ nhất.
A . N - 4 3 ; 2 ; 4 3
B. N (-2; 0; 1)
C . N - 1 2 ; 5 4 ; 3 4
D. N (-1; 2; 1)
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(2;0;0) , B(1;-4;0), C(0;-2;6) và mặt phẳng ( α ) : x + 2y + z- 5 = 0. Gọi H(a;b;c) là hình chiếu vuông góc của trọng tâm tam giác ABC lên mặt phẳng ( α ) . Tính P = a - b + c.
A. 5
B. -3
C. 3
D. -1
CH 1.Trong không gian Oxyz ; Cho 3 điểm: A(-1; 1; 4) , B(1;- 1; 5) và C(1; 0; 3), toạ độ điểm D để ABCD là một hình bình hành là: A. D(-1; 2; 2) C. D(-1;-2 ; 2) D. D(1; -2; -2)
CH 2.Trong không gian Oxyz cho 2 điểm A (1;–2;2) và B (– 2:0;1). Toạ độ điềm C nằm trên trục Oz để A ABC cân tại C là : A. C(0;0;2) C. C(0;–1;0) B. D(1; 2; -2) В. С(0,:0,-2) D. C( ;0;0)
CH 3. Trong không gian Oxyz cho 2 vectơ a =(1; 2; 2) và (1; 2; -2); khi đó : ¿(i+6) có giá trị bằng : С. 4 A. 10 В. 18 D. 8
CH 4.Trong không gian Oxyz cho 2 vecto a= (3; 1; 2) và b= (2; 0; -1); khi đó vectơ 2a-b có độ dài bằng : А. 3/5 В. 29 С. M D. S/5
CH 5. Cho hình bình hành ABCD với A (-1;0;2), B(3;4;0) D (5;2;6). Tìm khẳng định sai. A. Tâm của hình bình hành có tọa độ là (4;3;3) B. Vecto AB có tọa độ là (4;-4;-2) C. Tọa độ của điểm C là (9;6;4) D. Trọng tâm tam giác ABD có tọa độ là (3;2;2)
Trong không gian Oxyz, cho tam giác ABC vuông tại C, A B C ^ = 60 o , A B = 3 2 Đường thẳng AB có phương trình x - 3 1 = y - 4 1 = z + 8 - 4 đường thẳng AC nằm trên mặt phẳng α : x+z-1=0 Biết B là điểm có hoành độ dương, gọi (a;b;c) là tọa độ của điểm C, giá trị của a+b+c bằng
A. 3
B. 2
C. 4
D. 7
Trong không gian với hệ trục tọa độ Oxyz, cho 4 điểm A(2;4;-1), B(1;4;-1), C(2;4;3), D(2;2;-1), biết M(x;y;z) để M A 2 + M B 2 + M C 2 + M D 2 đạt giá trị nhỏ nhất thì x+y+z bằng
A. 6
B. 21 4
C. 8
D. 9
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x − 2 1 = y + 1 1 = z + 1 − 2 và Δ : x − 3 1 = y + 1 1 = z + 3 2 . Viết phương trình mặt phẳng (P) chứa d và tạo với tam giác một góc 30 ° . có dạng x + a y + b z + c = 0 với a , b , c ∈ ℤ khi đó giá trị a+b+c là
A. 8
B. -8
C. 7
D. -7
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;0;-1) và mặt phẳng (P): x+ y -z -3 =0. Mặt cầu (S) có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho chu vi tam giác OIA bằng 6 + 2 . Phương trình mặt cầu (S) là
A. x + 2 2 + y - 2 2 + z + 1 2 = 9 và x + 1 2 + y - 2 2 + z + 2 2 = 9
B. x - 3 2 + y - 3 2 + z - 3 2 = 9 và x - 1 2 + y - 1 2 + z + 1 2 = 9
C. x + 2 2 + y - 2 2 + z - 1 2 = 9 và x 2 + y 2 + z + 3 2 = 9
D. x + 1 2 + y - 2 2 + z + 2 2 = 9 và x - 2 2 + y - 2 2 + z - 1 2 = 9
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;-3;2), B(0;1;-1) và G(2;-1;1). Tọa độ điểm C sao cho tam giác ABC nhận G là trọng tâm là:

![]()
![]()
![]()