Trong không gian với hệ tọa độ Oxyz, cho đường thẳng
d: x - 1 2 = y + 1 3 = z - 3 - 1 và mặt phẳng (P): x + 2y - 2z = 0.
Phương trình mặt cầu (S) có tâm tiếp xúc và cách (P) một
khoảng bằng 1
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng: ∆ : x 1 = y - 1 1 = z - 2 - 1 và mặt phẳng ( P ) : x + 2 y + 2 z - 4 = 0 . Phương trình đường thẳng d nằm trong mặt phẳng (P) sao cho d cắt và vuông góc với đường thẳng Δ là
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng
(P): x - 2y - 2z +1=0 và mặt phẳng (Q): x -2y - 2z - 2 = 0.
Khoảng cách h giữa hai mặt phẳng (P) và (Q) bằng bao nhiêu?
A. h = 1
B. h = 3
C. h = 1 3
D. h = 2 3
Trong không gian với hệ tọa độ Oxyz cho đường thẳng ∆ : x 1 = y - 1 1 = z - 2 - 1 và mặt phẳng (P): x+2y+2z-4=0. Phương trình đường thẳng d nằm trong (P) sao cho d cắt và vuông góc với đường thẳng ∆ là
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + 2y + 2z + 4 = 0 và điểm A(1;-2; 3). Tính khoảng cách từ điểm A đến mặt phẳng (P).
A. 7 3
B. 2
C. 14 2
D. 1
Trong không gian Oxyz, khoảng cách giữa đường thẳng d : x + 1 - 2 = y - 2 2 = z + 3 3 và mặt phẳng (P): x-2y+2z-5=0 bằng
A. 16 3
B. 2
C. 5 3
D. 3
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + y -2z - 1 = 0 và đường thẳng d: x - 2 1 = y - 2 1 = z - 2 . Tọa độ giao điểm của d và là
B. (1;0;0)
C. (2;2;0)
Trong không gian với hệ tọa độ Oxyz, biết M (a;b;c)
(với a > 0) là điểm thuộc đường thẳng ∆ : x 1 = y + 2 - 1 = z - 1 2
và cách mặt phẳng (P): 2x - y + 2z - 5 = 0 một khoảng bằng 2.
Tính giá trị của T = a + b + c
A. T= -1
B. T = -3
C. T = 3
D. T = 1
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;-1), đường thẳng d : x - 1 2 = y + 1 1 = z - 2 - 1 và mặt phẳng (P): x+y+2z+1=0. Điểm B thuộc mặt phẳng (P) thỏa mãn đường thẳng AB vuông góc và cắt đường thẳng d. Tọa độ điểm B là
A. (3;-2;-1)
B. (-3;8;-3)
C. (0;3;-2)
D. (6;-7;0)