Trong không gian với hệ trục tọa độ Oxyz
cho điểm I (1;-4;3). Phương trình mặt cầu
tâm I và tiếp xúc với mặt phẳng (Oyz) là:
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;-2;3). Gọi (S) là mặt cầu chứa A, có tâm I thuộc tia Ox và bán kính 7. Phương trình mặt cầu (S) là
A. x - 3 2 + y 2 + z 2 = 49
B. x + 7 2 + y 2 + z 2 = 49
C. x - 7 2 + y 2 + z 2 = 49
D. x + 5 2 + y 2 + z 2 = 49
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(1;-1;1) và mặt phẳng (P): 2x - y + 2z + 1 = 0. Biết (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính bằng 3. Viết phương trình của mặt cầu (S).
A. ( x - 1 ) 2 + ( y + 1 ) 2 + ( z - 1 ) 2 = 13
B. ( x - 1 ) 2 + ( y + 1 ) 2 + ( z - 1 ) 2 = 169
C. ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 1 ) 2 = 169
D. ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 1 ) 2 = 169
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;2;1), B(3;-1;1), C(-1;-1;1). Gọi S 1 là mặt cầu tâm A, bán kính bằng 2; S 2 và S 3 là hai mặt cầu có tâm lần lượt là B, C và bán kính đều bằng 1. Trong các mặt phẳng tiếp xúc với cả 3 mặt cầu S 1 , S 2 , S 3 có bao nhiêu mặt phẳng vuông góc với mặt phẳng (Oyz)?
A. 3
B. 1
C. 4
D. 2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α m : 3 m x + 5 1 - m 2 y + 4 m z + 20 = 0 . Biết rằng với mọi m ∈ - 1 ; 1 thì mặt phẳng α m tiếp xúc với một mặt cầu (S) cố định. Tính bán kính R mặt cầu (S) biết rằng tâm của mặt cầu (S) nằm trên mặt phẳng (Oxz).
A. R = 4
B. R = 5
C. R = 3
D. R = 2
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 1 = y + 2 1 = z 1 và mặt phẳng (P): 2x+y-2z+2=0. Gọi (S) là mặt cầu có tâm nằm trên d, tiếp xúc với mặt phẳng (P) và đi qua điểm A(2;-1;0). Biết tâm của mặt cầu có cao độ không nhỏ hơn 1, phương trình mặt cầu (S) là:
Trong không gian với hệ tọa độ Oxyz, cho điểm I(1;2;1) và mặt phẳng P : 2 x - y + 2 z - 7 = 0 . Viết phương trình mặt cầu (S) có tâm I và tiếp xúc với (P).
Trong không gian Oxyz, mặt cầu (S) có tâm I(1;2;-3) và tiếp xúc với mặt phẳng (Oyz) có phương trình là
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có tâm I(-1;2;0) và bán kính R=3. Phương trình mặt cầu (S) là: