Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : x + 1 2 = y 3 = z + 1 - 1 và hai điểm A(1; 2; -1); B (3; -1; -5). Gọi d là đường thẳng đi qua điểm A và cắt đường thẳng Δ sao cho khoảng cách từ điểm B đến đường thẳng d là lớn nhất. Phương trình đường thẳng d là:
A . x - 3 2 = y 2 = z + 5 - 1
B . x - 1 = y + 2 3 = z 4
C . x + 2 3 = y 1 = z - 1 - 1
D. Tất cả sai
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 5 2 = y + 7 2 = z - 12 - 1 và mặt phẳng ( α ) : x+2y-3z-3=0. Gọi M là giao điểm của d với ( α ) , A thuộc d sao cho A M = 14 . Tính khoảng cách từ A đến mặt phẳng ( α )
A. 2
B. 3.
C. 6.
D. 14
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;-1;-2) và đường thẳng d có phương trình x - 1 1 = y - 1 - 1 = z - 1 1 . Gọi (P) là mặt phẳng đi qua điểm A, song song với đường thẳng d và khoảng cách từ đường thẳng d tới mặt phẳng (P) là lớn nhất. Khi đó, mặt phẳng (P) vuông góc với mặt phẳng nào sau đây?
Trong không gian Oxyz, cho mặt phẳng (P) đi qua hai điểm A(1;2;3), B(3;-1;1) và song song với đường thẳng d: x - 1 2 = y + 2 - 1 = z - 3 1 . Khoảng cách từ gốc tọa độ đến mặt phẳng bằng
A. 37 101
B. 5 77
C. 37 101
D. 5 77 77
Trong không gian với hệ trục tọa độ Oxyz, cho d: x - 3 2 = y + 2 1 = z + 1 - 1 và (P): x + y + z + 2 = 0 Có bao nhiêu đường thẳng nằm trong mặt phẳng (P) mà ∆ ⊥ d và khoảng cách từ M đến bằng 42 . Biết M là giao điểm của (P) và d.
A. 2
B. 0
C. 1
D. 4
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm M(-2;-2;1), A(1;2;-3) và đường thẳng d: x + 1 2 = y - 5 2 = z - 1 . Tìm vectơ chỉ phương u → của dường thẳng ∆ đi qua M, vuông góc với đường thẳng d, đồng thời cách điểm A một khoảng lớn nhất
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 3 2 = y + 2 1 = z + 1 - 1 , mặt phẳng (P):x+y+z+2=0. Gọi M là giao điểm của d và (P). Gọi ∆ là đường thẳng nằm trong (P) vuông góc với d và cách M một khoảng bằng 42 . Phương trình đường thẳng là.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 3 2 = y + 2 1 = z + 1 - 1 và mặt phẳng (P):x+y+z+2=0. Đường thẳng ∆ nằm trong mặt phẳng (P) vuông góc với đường thẳng d đồng thời khoảng cách từ giao điểm I của d với (P) đến ∆ bằng 42 . Gọi M(5;b;c) là hình chiếu vuông góc của I trên ∆ . Giá trị của bc bằng
A. -10
B. 10
C. 12
D. -20
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(-1;2;1), B(1;2;-3) và đường thẳng d: x + 1 2 = y - 5 2 = z - 1 Tìm vectơ chỉ phương của đường thẳng đi qua A và vuông góc với d đồ ng thời cách B một khoảng lớn nhất.
A. u → = ( 4 ; - 3 ; 2 )
B. u → = ( 2 ; 0 ; - 4 )
C. u → = ( 2 ; 2 ; - 1 )
D. u → = ( 1 ; 0 ; 2 )
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 1 2 = y 1 = z + 1 3 và mặt phẳng (P): 2x+y-z=0. Mặt phẳng (Q) chứa đường thẳng d và vuông góc với mặt phẳng (P). Khoảng cách từ điểm O(0;0;0) đến mặt phẳng (Q) bằng
A. 1 3
B. 1 3
C. 1 5
D. 1 5