Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;4;5), B(3;4;0), C(2;-1;0) và mặt phẳng (P): 3x-3y-2z-12=0. Gọi M(a;b;c) thuộc (P) sao cho  M A 2 + M B 2 + 3 M C 2  đạt giá trị nhỏ nhất. Tính tổng  a+b+c

A. 3

B. 2

C. -2

D.  -3

Cao Minh Tâm
29 tháng 1 2019 lúc 3:21

Đáp án A

Phương pháp

+) Gọi I là điểm thỏa mãn hệ thức  I A → + I B → + 3 I C → = 0 →  tìm tọa độ điểm I.

+) Chứng minh  M A 2 + M B 2 + 3 M C 2  nhỏ nhất <=> MI nhỏ nhất.

+) MI nhỏ nhất <=> M là hình chiếu của I trên (P)

Cách giải

 

Gọi  là điểm thỏa mãn ta có hệ phương trình:

Ta có: 

Khi đó M là hình chiếu của I trên (P)

Gọi d là đường thẳng đi qua I và vuông góc với (P) 

M ∈ (P) Suy ra

=> 3(3t+2) - 3(-3t+1)-2(-2t+1)-12=0

=> a+ b+ c =3


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết