Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm A(0;1;1); B(1;-2;0) và C(1;0;2). Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (P)
A. (-4;2;-2)
B. (2;-1;1)
C. (4;2;2)
D. (2;1;-1)
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (-1; 2; 4) và B (0; 1; 5). Gọi (P) là mặt phẳng đi qua A sao cho khoảng cách từ B đến (P) là lớn nhất. Khi đó, khoảng cách d từ O đến mặt phẳng (P) bằng bao nhiêu?
A . d = - 3 3
B . d = 3
C . d = 1 3
D . d = 1 3
Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(0;-1;2) và N(-1;1;3). Một mặt phẳng (P) đi qua M, N sao cho khoảng cách từ điểm K(0;0;2) đến mặt phẳng (P) đạt giá trị lớn nhất. Tìm tọa độ véctơ pháp tuyến n → của mặt phẳng
A. n → =(1;-1;1)
B. n → =(1;1;-1)
C. n → =(2;-1;1)
D. n → =(2;1;-1)
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A (1;1;0), B (0;-1;2). Biết rằng có hai mặt phẳng cùng đi qua hai điểm A, O và cùng cách B một khoảng bằng √3. Véctơ nào trong các véctơ dưới đây là một véctơ pháp tuyến của một trong hai mặt phẳng đó.
Trong không gian với hệ trục Oxyz, cho hai điểm M (0;-1;2), N (-1; 1; 3). Một mặt phẳng (P) đi qua M, N sao cho khoảng cách từ điểm K (0;0;2) đến mặt phẳng (P) đạt giá trị nhỏ nhất. Tìm tọa độ véctơ pháp tuyến của mặt phẳng (P).
A . n → = 1 ; - 1 ; 1
B . n → = 1 ; 1 ; - 1
C . n → = 2 ; - 1 ; 1
D . n → = 2 ; 1 ; - 1
Trong không gian với hệ trục tọa độ Oxyz ,cho 3 điểm A(1;0;0), B(0;-2;0), C(0;0;-5). Vectơ nào là một vectơ pháp tuyến của mặt phẳng (ABC)
A. 1 ; 1 2 ; 1 5
B. 1 ; - 1 2 ; - 1 5
C. 1 ; - 1 2 ; 1 5
D. 1 ; 1 2 ; - 1 5
Trong không gian với hệ tọa độ Oxyz, cho điểm M(4;1;9). Gọi (P) là mặt phẳng đi qua M và cắt 3 tia Ox, Oy, Oz lần lượt tại các điểm A,B,C (khác 0) sao cho (OA+OB+OC) đạt giá trị nhỏ nhất. Tính khoảng cách d từ điểm I(0;1;3) đến mặt phẳng (P).
A. d= 34 5
B. d= 36 5
C. d= 24 7
D. d= 30 7
Trong không gian với hệ tọa độ Oxyz, cho các điểm M (2;2; -3) và N (-4; 2; 1). Gọi Δ là đường thẳng đi qua M, nhận vecto làm vectơ chỉ phương và song song với mặt phẳng (P): 2x+y+z=0 sao cho khoảng cách từ N đến Δ đạt giá trị nhỏ nhất. Biết |a|, |b| là hai số nguyên tố cùng nhau. Khi đó |a| + |b| + |c| bằng:
A. 15
B. 13
C. 16
D. 14
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(-1;-2;2), B((-3;-2;0) và mặt phẳng (P):x+3y-z+2=0. Vectơ chỉ phương của đường thẳng d là giao tuyến của mặt phẳng (P) và mặt phẳng trung trực của đoạn AB có tọa độ là: