Chọn A.
Mặt phẳng chứa A, B và vuông góc với (β) nên (α) có một vectơ pháp tuyến là:
Chọn A.
Mặt phẳng chứa A, B và vuông góc với (β) nên (α) có một vectơ pháp tuyến là:
Lập phương trình mặt phẳng ( α ) đi qua hai điểm A(0; 1; 0) , B(2; 3; 1) và vuông góc với mặt phẳng ( β ): x + 2y – z = 0 .
Trong không gian Oxyz cho mặt phẳng (P): 5x+my+4z+n=0 đi qua giao tuyến của hai mặt phẳng α : 3x-7y+z-3=0 và β : x-9y-2z+5=0. Tính m+n
A. 6
B. -16
C. -3
D. -4
Lập phương trình mặt phẳng (α) qua hai điểm A(1; 0; 1), B(5; 2; 3) và vuông góc với mặt phẳng ( β) : 2x – y + z – 7 = 0
Trong không gian Oxyz cho mặt phẳng (α) có phương trình 4x + y + 2z + 1 =0 và mặt phẳng ( β) có phương trình 2x – 2y + z + 3 = 0
Tìm điểm M' là ảnh của M(4; 2; 1) qua phép đối xứng qua mặt phẳng (α).
Trong không gian với hệ toạ độ Oxyz, (α) là mặt phẳng đi qua điểm A ( 2 ; - 1 ; 5 ) và vuông góc với hai mặt phẳng ( P ) : 3 x – 2 y + z – 1 = 0 v à ( Q ) : 5 x – 4 y + 3 z + 10 = 0 . Phương trình mặt phẳng (α) là:
A. x + 2y + z- 5 = 0.
B. 2x – 4y – 2z – 9 = 0.
C. x - 2y + z -1 = 0
D. x- 2y- z + 1 = 0
Trong không gian Oxyz cho mặt phẳng (P): 5x+my+4z+n=0 đi qua giao tuyến của hai mặt phẳng (α): 3x-7y+z-3=0 và (β): x-9y-2z+5=0. Tính m+n.
A. 6.
B. -16.
C. -3.
D. -4.
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x-y+z-1=0 và (Q):2x+y+1=0. Viết phương trình mặt phẳng đi qua A(1;-1;-2) vuông góc với hai mặt phẳng (P) và (Q).
Trong không gian Oxyz cho mặt phẳng (α) có phương trình 4x + y + 2z + 1 =0 và mặt phẳng ( β) có phương trình 2x – 2y + z + 3 = 0
Tìm điểm N' là ảnh của N(0; 2; 4) quá phép đối xứng qua đường thẳng d.
Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng α đi qua hai điểm A(3;1;-1), B(2;-1;4) và vuông góc với mặt phẳng β : 3x+y-2z+5=0 là: